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Abstract—Counterfeiting of goods and electronic devices is
a growing problem that has a huge economic impact on the
electronics industry. Sometimes the consequences are even more
dramatic, when critical systems start failing due to the use of
counterfeit lower quality components. Hardware Intrinsic secu-
rity (i.e. security systems built on the unique electronic fingerprint
of a device) offers the potential to reduce the counterfeiting
problem drastically. In this paper we will show how Hardware
Intrinsic Security (HIS) can be used to prevent various forms of
counterfeiting and over-production. HIS technology can also be
used to bind software or user data to specific hardware devices,
which provides additional security to both soft- and hardware
vendors as well as consumers using HIS-enabled products.
Besides showing the benefits of HIS, we will also provide an
extensive overview of the results (both scientific and industrial)
that Intrinsic-ID has achieved studying and implementing HIS.

I. INTRODUCTION

Cloning, theft of service or sensitive data and tampering
have become serious threats to the revenue and reputation
of hardware vendors. To protect their products against these
attacks hardware security, based on cryptographic primitives
using keys, can be used. These keys are usually stored some-
where in the hardware (in non-volatile memory). Hence, the
strength of the security depends on the effort required from
attackers to compromise them. Tools for attacking hardware
have become very advanced and can allow an attacker to
read the content of non-volatile memory. This has decreased
the protection provided by storing a key in memory to a
minimum. Finally, non-volatile memory is generally quite
costly to (securely) integrate in the IC manufacturing process.

In order to deal with these downsides of key storage in
non-volatile memory Hardware Intrinsic Security (HIS) can
be used. This term is used for security mechanisms that are
based on the intrinsic hardware properties of an electronic
device, in particular properties of SRAM. These properties
are comparable to human biometrics and can be seen as
the unique fingerprint of an electronic circuit. In particular
security mechanisms using Physically Unclonable Functions
(PUFs) belong to the category of HIS mechanisms and were
introduced by Pappu [1] in 2001.

Due to deep-submicron manufacturing process variations
every transistor in an integrated circuit (IC) has slightly dif-
ferent physical properties that lead to measurable differences
in terms of its electronic properties (e.g. threshold voltage,

gain factor). Since these process variations are uncontrollable
during manufacturing, the physical properties of a device
cannot be copied or cloned. It is very hard, expensive and
economically not viable to purposely create a device with a
given electronic fingerprint. A PUF implementation requires
an electronic circuit that measures the responses of hardware
to certain given inputs or challenges. These responses depend
on the unique physical properties of the device. Hence PUFs
are functions which are easy to challenge and whose response
is easy to measure, but very hard to reproduce by construction.

PUF circuits can be used to uniquely identify hardware
devices. This can be achieved either by simply measuring
its hardware intrinsic properties or by using these properties
to derive a device unique cryptographic key. This implies
that keys can be stored“without storing them” and hence are
present in the device only during a minimal time window
(when the PUF is challenged) and therefore not vulnerable
to attacks on non-volatile storage.

In order to be able to uniquely identify a device, a PUF must
both be reliable and unique. By reliable we mean the fact that
one is able to reproduce the same behaviour of the function
when challenged with the same input over and over again. The
behavioural characteristics of electronic components depend
on the environment they are exposed to, namely in terms of
parameters such as the ambient temperature, the voltage ramp-
up curves, high and low voltage supply, and electromagnetic
interference. It is of crucial importance that the function has a
stable behaviour across a range of environmental conditions.
Another important aspect of reliability is the fact that the
electronic component has a long lifetime (i.e. that it will not
change its behaviour after ten or twenty years). Typically it is
observed that PUFs exhibit a noisy behaviour; this means the
electronic read-out circuitry must include some type of error
correction process to stabilize the PUF responses both over
environmental conditions and over time. The second important
aspect when using a PUF for identification purposes is that
its responses should uniquely identify the device. By this we
mean for instance that one device’s key will never be the
same as another device’s key. Specifically when used for key
generation a PUF should also guarantee that all generated
device keys are distributed uniformly at random.

This paper will provide an overview of work and published
results on HIS. The main focus of the paper will be on
performing secure key storage using SRAM PUFs. However,978-3-9815370-0-0/DATE13/ c©2013 EDAA



other PUF types and application scenarios will also receive
appropriate attention.

A. Related Work

Pappu [1] introduced the concept of PUFs in 2001 under the
name Physical One-Way Functions. The proposed technology
was based on obtaining a response (scattering pattern) when
shining a laser on a bubble-filled transparent epoxy wafer. In
2002 the first physical randomness function for silicon devices
was introduced by Gassend et al. [2]. This function makes use
of the manufacturing process variations in ICs, with identical
masks, to uniquely characterize each IC. For this purpose
the frequency of ring oscillators were measured. Using this
method (now known as a Ring Oscillator PUF), they were able
to characterize ICs. In 2004 Lee et al. [3] proposed another
PUF that is based on delay measurements, the Arbiter PUF.

Besides intrinsic PUFs based on delay measurements a
second type of PUF in ICs is known: the memory-based
PUF. These PUFs are based on the measurement of start-
up values of memory cells. This memory-based PUF type
includes SRAM PUFs, which were introduced by Guajardo
et al. in 2007 [4]. Furthermore, so-called Butterfly PUFs were
introduced in 2008 by Kumar et al. [5], D Flip-Flop PUFs
by Maes et al. [6] in 2008, and recently Buskeeper PUFs by
Simons et al. [7] in 2012.

B. Organization of Publication

After the introduction, Section II provides information on
the background of SRAM PUF technology. On the one hand
this consists of a description of SRAM PUF technology, on
the other hand an overview of applications for which the
technology can be used. In Section III the two main properties
of PUFs are described. Also, an overview of work performed
on testing these properties is provided. Section IV is used to
show an example design of a security module based on HIS
technology and the paper is concluded in Section V.

II. BACKGROUND ON SRAM PUFS

This section will provide background information on PUFs,
with a specific focus on SRAM PUFs. This information
consists of two components. Firstly, the technology behind
SRAM PUFs will be described. Secondly, an overview will
be provided of several different application for which SRAM
PUFs can be used.

A. SRAM PUF Technology

The principle of SRAM PUF operation is based on the start-
up value of SRAM memory cells and was first published by
Guajardo et al. in [4]. The initial state of each SRAM cell
bit is a function of process variation due to the manufacturing
process. The stabilization of each bit depends on the threshold
voltage mismatch between local devices.

A 6T-SRAM cell, consisting of cross coupled inverters
and access transistors, is presented in Figure 1. The stable
states of the indicated SRAM cell are Q’Q=01 and Q’Q=10.
When Vdd is not applied to this cell (cell is not powered)

Fig. 1. The SRAM 6T cell

both nodes, Q’ and Q, are low. When the power supply is
turned on, the T2 and T4 transistors conduct and the nodes
Q’ and Q are charged while the circuit is approaching the
metastable point. Supposing that Q’ charges faster, and node
Q gets discharged through T3, the cell stabilizes to the state
of Q’Q=10. The two possible stable states of 6T-SRAM cell
are highlighted in Figure 2. The state “00” is the state when
the circuit is switched off and “11” is the intermediate state
before stabilization to “01” or “10”.

Fig. 2. The two highlighted stable states of 6T-SRAM cell (01 and 10)

Given that every SRAM cell will start-up independently,
with a value determined by the uncontrollable process vari-
ations during manufacturing, a fingerprint consisting of 0
and 1 values appears in the SRAM memory after Vdd is
applied. Studies have shown that this fingerprint is stable when
powering the same SRAM multiple times and unique when
comparing fingerprints of different SRAM memories (for more
details see Section III).

B. SRAM PUF Applications

PUFs can be used for many different security purposes. The
main example application is this section is secure key storage.
However, other examples are also provided in the overview
below.

1) Secure Key Storage: A very common purpose for PUFs
are their use in secure key storage implementations [8].
In secure key storage we distinguish two phases (see also
Figure 3): Enrollment and Reconstruction.

Enrollment: During “Enrollment” the key is programmed
into a device. Hence this can be seen as the key programming
phase for other secure key storage mechanisms. To do this,
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Fig. 3. Enrollment and Key Reconstruction for the described PUF model.

the response of the targeted PUF is measured. This response
is called the reference PUF response and is the input of
the Fuzzy Extractor [9–11]. The Fuzzy Extractor (FE, also
known as Helper Data Algorithm) derives a cryptographic
key from this reference response and computes helper data.
In the “Reconstruction” phase, the helper data enables FE
to reconstruct the exact same (“programmed”) cryptographic
key from a response of this specific PUF. The helper data is
stored in non-volatile memory attached to the device and is
public information.
Reconstruction: In the “Reconstruction” phase the same
PUF is measured again and its response is input for FE.
The FE uses the stored helper data and the new response to
reconstruct the cryptographic key that was “programmed”
during “Enrollment”. If the measured PUF response is
close enough to the reference response, the original key is
successfully reconstructed.

Fuzzy Extractor: The two main steps that FE performs to
derive a cryptographic key from a PUF response are:

• Information reconciliation: Perform error correction on a
measured PUF response using the helper data.

• Privacy amplification: Assuming that an attacker has
partial information on the PUF response (because of
information from helper data), compress the resulting
string into a cryptographic key with maximum entropy
(hence maximum uncertainty for the attacker).

Anti-counterfeiting: The described key storage mechanism
possesses inherent anti-counterfeiting properties:

• The key is never stored in the device (only constructed
when required). This means that an attacker will be
unable to extract the key from the device by (invasively)
reading memory. Also since the key is only available
when required, the window of opportunity for an attacker
is extremely small.

• The helper data does not contain information about he
key. An attacker can freely read this publicly stored

information without obtaining any knowledge on the key.
• A key cannot be copied from one device to another and

is therefore uniquely bound to a specific device. This is
because the key is obtained by combining the helper data
with the device specific PUF response. Since this PUF
response is unclonable, the key cannot be copied. Only
copying helper data from one device to another will not
result in obtaining the key, since the PUF response is
different for every device.

2) Random Number Generation: An important building
block for many cryptographic systems is a random number
generator. Random numbers are required in these systems,
because they are unpredictable for potential attackers. In
cryptographic systems where PUFs are used for authentication
or secure key storage, an interesting source of randomness is
readily available. This source is the noise, which occurs on
every PUF response. Utilizing this noise in a proper manner
can result in a random number generator based on PUFs [12].

3) Device Authentication: Besides using the hardware fin-
gerprint of an SRAM PUF for secure key storage, it can also
be used in device authentication scenarios. Using this device
specific fingerprint “vendor approved” ICs can be registered in
a database. This way overproduced and counterfeited hardware
can be identified, since their fingerprints will not be in the
database. Only chips that have been approved by the vendor
will be activated and can be used by customers [13].

4) Hardware/Software Binding: When a key has been de-
rived from a PUF, this key can be used for many differ-
ent security applications. One of these applications is Hard-
ware/Software binding [14]. In case of HW/SW binding the
key from the PUF is used to bind software to specific hardware
by encrypting the software with the unique key, which has
been derived from the SRAM PUF. This way it will become
impossible for an attacker to copy the software to another
device, since this second device does not have the same PUF
and therefore not the same unique key for decrypting the
software successfully.

III. PUF PROPERTIES

In order to be able to use PUFs in security applications, like
the use cases described in the previous section, they should
possess two properties that determine the quality of these
PUFs. These properties are reliability and uniqueness. In this
section we will describe these two properties in more detail
and provide an overview of work that has been published in
order to demonstrate that PUFs possess these properties.

A. Main Properties

As stated, the first objective of this section is to describe
the properties reliability and uniqueness in more detail.

1) Reliability: The first property is reliability. We define
reliability as follows: when a PUF response is measured
during “Reconstruction”, the FE should always be able to
reconstruct the reference measurement that was taken during
“Enrollment”. When responses of a single PUF are measured
multiple times (either under varying or stable conditions) a
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Fig. 4. Visualisation of the two most important PUF properties.

number of bit flips (due to noise) will occur. As stated earlier,
the information reconciliation step in FE allows for error
correction during “Reconstruction”. The amount of noise that
can be corrected depends on the implemented error correction
code. For example, Fuzzy Extractors can be designed to correct
25% of noise (or more), without errors in the reconstructed
key. However, the smaller the amount of noise is for which
the FE has been designed, the more efficient error correcting
codes can be used.

When PUFs are used in practical implementations they can
be subjected to all kinds of external conditions. Examples
of these conditions are extreme temperatures, varying supply
voltages and different voltage ramp-up curves. Under all these
conditions FE needs to be able to correctly reconstruct the
cryptographic key. Therefore, it should be able to correct the
errors that arise due to noise.

2) Uniqueness: The other important parameter for PUFs
is uniqueness. We define uniqueness as follows: From a set
of PUFs, the response(s) of a specific PUF is/are random
and unpredictable, even given all the responses of the other
PUFs in the set. To achieve this the PUF used as a source of
randomness should be such that:

• There is enough entropy in the source across individual
PUFs. In other words, statistically speaking each PUF is
unique and the probability that two PUFs have a response
that is “close” to each other is negligibly small.

• Each PUF response is in itself random and unpredictable.
So the bits of a specific PUF response provide a negligi-
bly small amount of information about each other.

B. PUF Evaluation

After defining the two main properties that are required for
PUFs to operate, we will provide an overview of work that
demonstrates the quality of PUFs (based on these two main
properties). First of all, several papers have been published
that extensively show the performance of evaluated SRAM
memories used as PUFs. Below a selection of these papers
can be found.

• After the introduction of SRAM PUFs in [4] on FPGAs, a
first evaluation of SRAM PUFs in an actual ASIC design
can be found in [15]. In this paper the authors use SRAM

memories from a 90nm device to perform several tests. In
regard to reliability the impact of temperature and voltage
variations as well as CMOS ageing have been evaluated
for the SRAM PUFs. Using a Hamming Distance test,
a first attempt to quantify the uniqueness of these PUFs
has been made. The paper concludes that all performed
tests show suitable PUF behaviour from these memories,
which can be used for secure key storage when combined
with a Fuzzy Extractor.

• A similar study has been performed on SRAMs in 65nm
technology in [16]. This paper also contains a comparison
to D-Flip Flop (DFF) PUFs in the same technology. It
becomes clear that the performance of SRAM is much
better than that of DFF PUFs, both regarding reliability
and uniqueness.

• Finally, in [17] several different SRAM technologies
(varying from 180nm down to 65nm) have been evaluated
on their PUF properties. Based on combining the worst-
case results of all of these memories a Fuzzy Extractor
is designed. This shows that all evaluated memories are
suitable for use as PUFs, since combining their worst-
case behaviours it is still possible (and fairly easy) to
design the required Fuzzy Extractor.

• When not using SRAM PUFs for secure key storage, it
is possible to utilize the noise on the SRAM start-up
patterns for generating randomness. In [12] a construction
for a FIPS 140-3 compliant random number generator
based on this PUF noise is presented. The paper contains
a detailed evaluation of test results from different SRAM
memories, which lead to a worst-case construction for
this random number generator.

Besides SRAM PUFs, other memory-based PUF types have
also been evaluated recently. On this topic several papers have
been published, however none of them have been able to
provide a PUF with better performance than (or even similar
to) this SRAM PUF. Below an overview of some of these
papers can be found.

• An evaluation of DFF PUF performance in 130nm [18]
shows a decreased uniqueness of PUFs (in comparison
to SRAM) due to biasing in the start-up patterns. This
paper does provide a solution for solving this uniqueness
problem, however the proposed PUF will never be as
resource efficient as known SRAM PUFs.

• As stated before, in [16] DFF PUFs are compared to
SRAM PUFs in 65nm technology. This paper shows how
these DFF PUFs perform worse than the SRAM PUFs in
regard to both reliability and uniqueness.

• Finally, a new type of memory-based PUF was introduced
in [7], the Buskeeper PUF. Although this is a very promis-
ing new technology the first results from the paper show
that at this moment Buskeeper PUFs do not perform as
well as SRAM PUFs yet (again, both regarding reliability
and uniqueness).
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IV. DESIGNING A HIS MODULE

Based on the different PUF technology components that
have been described so far, this section will provide a design
example of an integrated security solution based on HIS
technology.

A. Building Blocks

1) Secure Key Storage Module: The most important build-
ing block of the HIS module is the SRAM PUF for secure
key storage. This block has already been described in detail
in Section II. As stated before it offers key storage, without
physically storing the key. This mechanism provides the mod-
ule with very specific anti-counterfeiting properties. Since the
key is based on a combination of helper data and the device
specific PUF response (which is inherently unclonable), it is
not possible for an attacker to copy a key from one device to
another. Figure 5 shows how copying the helper data between
devices will not result in a successful attack, since the PUF
response from each SRAM memory will be different. This
PUF response is not stored anywhere (only appears at start-
up of the memory) and cannot be copied between devices.
Because of the anti-counterfeiting properties of this secure key
storage module, it is used as the root-of-trust in hardware for
the HIS module.

Fig. 5. Anti-counterfeiting property of key storage with SRAM PUF.

2) Random Number Generator: The random number gener-
ator used for this design is taken from [12]. This is a FIPS 140-
3 compliant random bit generator based on the noisy behaviour
of an SRAM PUF. The construction is depicted in Figure 6
and consists of two main parts:

1) An SRAM memory connected to a conditioning algo-
rithm for deriving a truly random seed.

2) A deterministic random bit generator (DRBG) according
to the NIST 800-90 [22] specification.

The conditioning algorithm is used to derive a truly random
seed from the SRAM start-up values. The entropy in noisy
bits of an SRAM PUF start-up pattern needs to be condensed
into a full entropy random seed. The conditioning algorithm
takes care of this. Basically, the conditioning algorithm is
a compression function that compresses a certain amount of

Fig. 6. Construction of random number generator.

input data into a smaller fixed size bit string. The amount of
compression required for generating a full entropy true random
output string is determined by the min-entropy of the input.

The deterministic random bit generator is built according
to the NIST 800-90 specification [22]. Internally it uses a
so called instantiate function and a generate function. The
instantiate function takes the truly random seed input and
generates a first internal state value. Upon request for a
certain amount of random output bytes, the generate function
uses a deterministic algorithm that derives these bytes from
the current state value and updates the internal state value
afterwards. For example, a cryptographic hash function or a
block cipher can be used for generating the output bits from
the internal state value [22].

3) Cryptographic Engine: As a cryptographic engine any
standard implementation of a cipher can be used. When
integrating this cipher into the HIS module it is important
to make sure that the SRAM PUF of the module is a storing
a key, which is compatible with the implemented cipher (e.g.
regarding length and strength).

B. HIS Module

Combining the described building blocks results in the HIS
module construction from Figure 7. This module has the
following capabilities:

• Secure key storage using an SRAM PUF.
• Random number generation for cryptographic purposes.

During enrollment of the secure key storage mechanism,
this random data could be used to derive a unique random
key for each individual hardware device.

• Content en-/decryption based on keys stored using the
SRAM PUF.

The designed module shows how efficiently a security solution
based on HIS technology can be designed. SRAM PUFs can
be used both for generating randomness as well as storing
keys. Furthermore, this module does not only aim for hardware
security. By adding a standard en-/decryption module, data can
be secured based on the unique fingerprint of the SRAM PUF.
This data can be used on the chip itself or can be exported
safely, for example for cloud storage purposes. By using the
keys derived from the PUF, the data will always be uniquely
bound to this specific device. This way the data (even when
stored in the cloud) can never be misused by attackers, since
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Fig. 7. Construction of the HIS module.

they do not possess the PUF that generates the secret key for
decryption. For other examples of how HIS technology can be
used to solve practical use cases see [21].

V. CONCLUSIONS

This paper has provided an overview of work performed
on Hardware Intrinsic Security. It becomes clear from this
overview that the research on this topic has come a long way.
Starting out as theoretical research, it has developed into a
high-end security technology. It provides solutions for (among
others) secure key storage, random number generation, and
data protection. Extensive research on HIS has resulted in
many scientific publications, which have focussed on demon-
strating the usability of PUFs in security solutions. Test results
have successfully shown the reliability and uniqueness of
the device specific fingerprints derived using PUFs. These
fingerprints form the basis of HIS technology and allow device
manufacturers to find a root-of-trust for security applications
in the hardware of their own devices.

It is the opinion of the authors that the demonstrated HIS
and PUF technology will continue to play a significant role in
the ever ongoing battle against counterfeiting and cloning by
providing security solutions for many different markets (such
as SmartCards, FPGAs, and mobile devices).
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