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ABSTRACT

In this paper we describe the results of our investigationsE] on
the randomness and reliability of D flip-flops when used as
a Physically Unclonable Function (PUF). These D flip-flops
are hardware components which present a random start-up
value when powered up. We show that against all odds,
enough randomness exists in such elements when imple-
mented on an Application-Specific Integrated Circuit (ASIC)
to turn the responses of a number of D flip-flops into a secret
random sequence allowing to derive keys for use in conjunc-
tion with cryptographic algorithms. In addition to being
unpredictable, these flip-flops have the advantage that they
can be spread over random locations in an ASIC. This makes
them very difficult to reverse-engineer when used to hide a
secret key in a design at a relatively small cost in resources.

Categories and Subject Descriptors

B.7.m [Hardware]: Integrated Circuits— Miscellaneous

General Terms
Algorithms, Measurement, Reliability, Security

1. INTRODUCTION

The term Hardware Intrinsic Security (HIS) is used for se-
curity mechanisms that are based on the intrinsic hardware
properties of an electronic device. Such hardware instrinsic
properties are very similar in nature to human biometrics
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and can be seen as the unique fingerprint of an electronic cir-
cuit. In particular security mechanisms using Physically Un-
clonable Functions (PUFs) belong to the category of hard-
ware intrinsic security mechanisms. Physically Unclonable
Functions were introduced by Pappu [18] in 2001.

Due to deep-submicron manufacturing process variations
every transistor in an integrated circuit (IC) has slightly dif-
ferent physical properties that lead to measurable differences
in terms of its electronic properties e.g. threshold voltage,
gain factor etc. Since these process variations are uncon-
trollable during manufacturing, the physical properties of
a device cannot be copied or cloned. It is very hard, ex-
pensive and economically not viable to purposely create a
device with a given electronic fingerprint. A PUF imple-
mentation requires an electronic circuit that measures the
responses of hardware to certain given inputs or challenges.
These responses depend on the unique physical properties
of the device. Hence PUFs are functions which are easy to
challenge and whose response is easy to measure, but very
hard to reproduce by construction.

One of the major applications for a PUF is to use it as an
identification or authentication primitive, either by using its
inherent biometric properties or by using it to derive a de-
vice unique cryptographic key. This implies that keys can be
stored "without storing them” and hence are present in the
device only during a minimal time window (when the PUF
is challenged) and therefore minimally vulnerable to attacks
on non-volatile storage. In order to be able to uniquely iden-
tify a device, a PUF must both be reliable and unique. By
reliable we mean the fact that one is able to reproduce the
same behaviour of the function when challenged with the
same input over and over again. The behavioural character-
istics of electronic components depend on the environment
they are exposed to, namely in terms of parameters such as
the ambient temperature, the voltage ramp-up curves, high
and low voltage supply, and electromagnetic interference.
It is of crucial importance that the function has a stable
behaviour across a range of environmental conditions. An-
other important aspect of reliability is the fact that the elec-
tronic component will age well, i.e. that it will not change



its behaviour after ten or twenty years. Typically it is ob-
served that PUFs exhibit a noisy behaviour; this means the
electronic read-out circuitry must include some type of er-
ror correction process to stabilize the PUF responses both
over environmental conditions and over time. The second
important aspect when using a PUF for identification or au-
thentication purposes is that its responses should uniquely
identify the device. By this we mean for instance that one
device’s key will never be the same as another device’s key.
Specifically when used for key generation a PUF should also
guarantee that all generated device keys are distributed uni-
formly at random.

Many different PUF variants are known today. They in-
clude so-called delay PUFs such as Arbiter PUFs first de-
scribed by Lee et al. in 2004 [12] and ring oscillator based
PUF's first described by Gassend et al. in 2002 |6], SRAM
based PUFs introduced by Guajardo et al. in 2007 [§],
so-called Butterfly PUF's introduced in 2008 by Kumar et
al. [11] and finally D flip-flop PUF's also introduced in 2008
by Maes et al. [14]. Implementations exist for dedicated
Integrated Circuit(ICs), programmable logic devices such as
Field Programmable Gate Arrays (FPGAs) and also for pro-
grammable ICs such as microcontrollers. Specific PUF vari-
ants are described in later sections of this paper and we also
provide more details about their relevant properties namely
when used as a cryptographic key storage and/or key gen-
eration primitive.

1.1 Related Work

The flip-flop PUF was introduced by Maes et al. in [14],
where an implementation on FPGA devices was considered.
The presented measurement results show that the entropy
in the measured flip-flop start-up values is rather limited
due to the presence of a strong bias, namely the strong
preference of most of the flip-flops to start up with a zero
value. Post-processing in the form of majority voting is used
in [14] to reduce the observed bias. However, the resulting
bit strings still contain sequences biased towards the zero
value which disqualifies them for use as strong cryptographic
keys. The stability of the derived bit strings under external
stress conditions and over time has not been investigated
either, which means one cannot tell whether such PUFs are
suitable for practical real-life applications. In addition, the
flip-flop PUF principle has been tested on only three devices,
which does not provide enough insight into its randomness
and uniqueness properties across many devices. It remains
an open problem to propose a construction which can qualify
flip-flops as strong random key generators on FPGAs or on
ASICs, and how reliable such flip-flops are in the presence
of environmental stress or over time.

1.2 Our contribution

In this paper, our investigations focus on D flip-flop PUF's
implemented on ASICs. Compared to SRAM PUFs, D flip-
flops present a real security advantage against invasive at-
tacks such as probing attacks. They can be randomly spread
across a design which makes it much harder for an attacker
to locate them and their signal lines connecting them to the
read-out and error correction circuitry. We focus on ASIC
implementations as these are more secure than implementa-
tions in reconfigurable logic. As far as we know this paper
proposes the first investigation of ASIC implementations of
D flip-flop PUFs.

In order to be able to exploit these PUFs for practical
purposes, their reliability must be tested. We describe how
our devices behave when subjected to extensive tests across
highly varying temperature conditions and static ageing con-
ditions. Our main result in this area is to show that D flip-
flop PUF's on ASICs are by far sufficiently stable to be used
for practical applications.

Another contribution of our experiments is that we are
able to obtain measurements on many more devices than
previous experiments on FPGAs. More specifically, in this
paper PUF responses are measured from 40 different devices,
fabricated in 130nm technology at the UMC semiconductor
foundry. This is all the more relevant since it allows to gain
more confidence in the fact that the generated bit strings
are indeed device unique and randomly distributed. Note
that it is impossible to predict this before the devices have
been manufactured and that our findings stem from real test
chips. After observing a strong bias in the distribution of
the generated bit strings while measuring their Hamming
weights, we propose a number of (non-cryptographic) post-
processing methods to eliminate that bias and proceed to se-
lect the best option which allows us to completely eliminate
it. Note that in principle our processing and compression
methods also apply to other types of PUFs such as SRAM
PUFs and Butterfly PUFs. Next we verify that the distri-
bution of bit strings among all devices is indeed such that
they can be uniquely identified. We further apply a com-
pression algorithm to our bit strings in order to evaluate
the entropy level contained in them. Measuring the exact
entropy contained in these devices is difficult since the num-
ber of samples available is limited. In this paper, we use
an algorithm which allows us to show that enough entropy
is contained in the available bit strings to qualify them as
cryptographic keys. By further feeding the resulting output
bit strings of our best post-processing method into the ap-
propriate standard NIST randomness tests, we are able to
show that this method is effectiveﬂ With the bias being
completely removed, enough entropy being present in the
bit strings and all results of the performed randomness tests
lying within acceptable boundaries, we can finally show that
the derived bits qualify for use as strong cryptographic keys.

1.3 Organization of the paper

In section [2] we provide an overview of the general PUF
framework and a selected number of existing PUF's in the
literature. Section [3] provides a description of the expected
characteristics and important parameters for the security of
a PUF. In this section we also describe the results of our first
measurements on D flip-flops and provide some statistics for
the observed results. In section [d] we propose an efficient
processing method to remove the bias observed in the gen-
erated bit strings and provide a thorough security analysis
of our resulting construction. Section[f]concludes the paper.

2. PHYSICALLY UNCLONABLE FUNCTIONS

This section starts with a general model presenting how
PUFs are used in applications and then proceeds to describe
the working principle of a specific selection of such PUFs.

2Note that not all NIST randomness tests can be performed
since a limited number of bits are available per device and
we can only run our tests on a limited number of samples.



2.1 The PUF Framework

Physically Unclonable Functions are physical structures
(consisting of many random components) that are easy to
measure but hard to characterize. An important application
of PUFs is their use as a secure cryptographic key storage
mechanism [20|. In this application one can distinguish two
phases: Enrollment and Key Reconstruction.

2.1.1 Enrollment

In the enrollment phase the key is programmed into a de-
vice. Hence this phase can be compared to the key program-
ming phase for other secure key storage mechanisms based
on non-volatile memory. In order to do this the PUF in
the device is challenged and the measured response (called
the reference PUF response) is input to a so-called fuzzy
extractor [2, 13, [13]. The fuzzy extractor derives a crypto-
graphic key from this reference PUF response and computes
helper data. Later on, in the key reconstruction phase, the
helper data enables the fuzzy extractor to reconstruct the
exact same ("programmed”) cryptographic key from a PUF
responsqg’l The helper data is stored in non-volatile memory
attached to the device and is not sensitive (public informa-
tion).

2.1.2 Key Reconstruction

In the key reconstruction phase the PUF is challenged
and the measured response is fed into the fuzzy extractor.
The fuzzy extractor reads out the helper data stored in non-
volatile memory and derives the cryptographic key that was
”programmed” during enrollment based on the helper data
and the PUF response. If the measured PUF response is
close enough to the reference PUF response, the original
key can be successfully reconstructed.

2.1.3  Fuzzy Extractor

Internally, the fuzzy extractor performs the following steps
to derive a cryptographic key from a measured PUF re-
sponse:

e Information reconciliation: Use the helper data to cor-
rect errors on the measured PUF response.

e Processing: Remove any biasing (unequal distribution
of zeros and ones) in the error-corrected PUF response.

e Privacy amplification: Assuming that an attacker may
learn a part of the bit string, compress the resulting
bit string into a cryptographic key with maximum en-
tropy.

In this paper we mainly focus on the processing phase. We
do not address the privacy amplification step as this can be
achieved using well-known methods based on secure extrac-
tors (3] [20].

2.2 PUF Instantiations

In this section we describe the most recent PUF schemes
that are specifically relying on the random start-up behaviour
of a memory-like electronic component. Such PUF schemes
are used for deriving a secret key for cryptographic purposes,
without storing this key in non-volatile memory. These

3Note that in principle this key can either be used as a device
unique key directly or as an encryption key to further store
an application or user specific key in encrypted form.
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Figure 1: Enrollment and Key Reconstruction for
the described PUF model.

schemes do not make use of a challenge-response mecha-
nism, such as some other PUFs (e.g. optical PUF). This set
includes PUF's based on the random start-up behaviour of
an SRAM cell, of a D flip-flop or of cross-coupled latches.

In table a systematic comparison of these memory based
PUF schemes can be found. All values in the table are based
on estimations by the authors of this paper or other publi-
cations. The required die area per bit is highly depending
on technology. Therefore an estimation has made based on
a possible number of required gates per memory cell. The
entropy estimation of butterfly PUFs from [11] seems to be
too high to us, while the estimation of Flip-flop PUF entropy
is still preliminary. Using a more sophisticated processing
method (e.g. cryptographical processing), it should be pos-
sible to derive more random bits from the Flip-flop PUF.
SRAM PUFs are rare on FPGAs because the presence of
uninitialized SRAM is rare in these devices.

2.2.1 SRAM PUFs

SRAM PUFs (8] use the start-up values of unitialized
SRAM memory cells. An SRAM cell is typically constructed
from 6 transistors: 2 access transistors connected to a cir-
cuit of 4 transistors that implement a pair of cross-coupled
inverters. Each inverter consists of a PMOS and an NMOS
transistor. When the SRAM cell is powered up, the strongest
inverter (the one with the lowest NMOS threshold voltage
or highest PMOS threshold voltage) starts switching first
and will pull the memory cell to either one or zero. Roughly
half of the memory cells power-up as a one value and half
as a zero value. The pattern is unique for each memory and
device. Different challenges are implemented by selecting
different SRAM parts. SRAM PUFs are built from standard
technology components that are available in every technol-
ogy node.

2.2.2 Butterfly PUFs

The butterfly PUF [11] derives from the same kind of prin-
ciple as the SRAM PUF. In case of butterfly PUFs, the
SRAM is replaced by cross-coupled latches to construct a
bi-stable cell. When powering up this cell, it is temporarily
in an unstable condition after which it collapses into either
the zero or the one output state. Different cells collapse



Table 1: Property comparison of different memory based PUF's
PUF type | Standard Spread | Nr of Gates per bit | Entropy Estimation Tested on FPGA/ASIC
Component | on die
SRAM Yes Limited | 2 (=1 SRAM cell) 76% (see |7]) - 93% (see |4]) | see [8]/ see |9]
Butterfly | No Yes 8 (=2 Latches) ? (78% assumed in |11]) see |11]/unknown
Flip-flop | Yes Yes 6 (=1 DFF) >17% (see section [ see |14]/This paper

into different output states depending on variations in the
production process.

2.2.3  Flip-flop PUFs

Flip-flop PUFs [14] are based on the power-up charac-
teristic of (uninitialized) D flip-flops. Due to uncontrolled
process variations, each flip-flop will have the tendency to
switch its output to either the zero state or the one state
when the IC is powered up. The main security advantage
of a flip-flop PUF, compared to an SRAM PUF, is the fact
that flip-flops are easily spread over an IC and hence are very
difficult to locate by an attacker trying to reverse-engineer
the chip and to probe each individual start-up bit.

3. PROPERTIES OF A PUF

When PUFs are used for security applications, they are
either used as unique device identifiers, i.e. as the devices’
unique unforgeable fingerprint, or as primitives to store keys
in a secure way in a device. In some applications, one can
also choose to use them to create a device-unique encryption
key which enables to store a user-defined key in encrypted
form. In all of these configurations two main properties be-
come relevant when assessing a PUF mechanism, namely
reliability and randomness.

3.1 Reliability

The first important parameter for PUFs is reliability. By
this we mean that for a given device, whenever the PUF re-
sponses are measured anew, one should be able to recognize
the reference measurement which was originally taken dur-
ing the so-called enrollment phase. This principle is similar
to human biometrics. When PUF responses are measured
on the same device multiple times (either under varying or
stable conditions) a number of errors (bit flips) will occur.
The information reconciliation step in the fuzzy extractor al-
gorithms allows to handle a certain amount of noise in those
measurements, depending on the implemented error correc-
tion code. Smaller noise percentages in the PUF responses
make it possible to use more efficient error correcting codes
that require less redundant information[1].

When used in practical applications, PUFs can be sub-
jected to all kinds of external conditions, such as high and
low temperatures, high humidity and different voltage ramp-
up curves. Under all these conditions the fuzzy extractor
needs to be able to correctly reconstruct the cryptographic
key and hence correct the errors due to noise. In this pa-
per, we show the stability of our PUF construction with the
following reliability tests:

1. Temperature Test: PUF responses are measured
while the devices are subjected to extreme ambient
temperatures varying from -40°C to +80°C.

2. Ageing Test: a set of devices is kept for several weeks
at a high ambient temperature (+80°C) and increased

core voltage (10% above normal operating level), while
PUF responses are being measured every hour.

The mobility of carriers in semiconductor devices depends
on temperature. Therefore temperature is likely to influence
the PUF behaviour of D flip flops and hence it is important
to investigate its impact. Besides the ability to function cor-
rectly under a variety of environmental conditions, it is also
important to guarantee the working of the system over time.
It is known that silicon slowly degrades when in use for a long
time. There are several failure mechanisms that contribute
to this ageing process such as electromigration, hot carrier
injection and negative bias temperature instability (NBTTI).
Most of these failure mechanisms are accelerated when an IC
is subjected to high operating temperatures and increased
core voltages. The goal of the ageing test is to speed up
the failure mechanisms and be able to measure the ageing
effects in a relatively short amount of time.

The details of these reliability tests (also called intra-class
stability tests) are discussed below. The tests have been per-
formed on D flip-flops from test ICs that were produced on
a Multi-Project-Wafer (MPW) in 130nm UMC technology.
In the design of these test ICs, the flip-flops were distributed
in small arrays of four and five flip-flops each. We show that
the PUF responses remain stable throughout all of the per-
formed tests. This means in particular that the observed
noise levels always remain within the limits where they can
still be error-corrected.

3.1.1 Temperature Test

‘We measured D flip-flop start-up values on 40 different ICs
that were placed inside a temperature chamber. Each device
contains (among other things) 1024 D flip-flops, whose start-
up values are measured as a bit string of length 1024 bits. D
flip-flop PUF responses were measured at the following envi-
ronmental temperatures: -40°C, -20°C, 0°C, +20°C, +40°C,
+60°C and +80°C. At each of these temperatures 50 PUF
responses were measured on each of the 40 devices. For each
device the fractional Hamming distanceﬁ between the mea-
sured PUF responses and a reference measurement (taken
in the enrollment phase at +20°C ambient temperature) is
computed. The resulting intra-class Hamming distance val-
ues are plotted in Fig.[2] The figure shows that noise levels
steadily remain below 13% no matter at what temperature
the measurements are taken. At most common tempera-
tures between 0°C and +40°C, this level even reduces to
about 7%. This means that the reconstructed values are
extremely stable and the noise levels lie well within the ac-
ceptable boundaries for efficient error correction within the
fuzzy extractor.

4By fractional Hamming distance we mean the Hamming
distance (i.e. the number of bit flips) between the reference
measurement and the sample, divided by the total length of
the sample in bits.
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Figure 2: Fractional Hamming distance over tem-
perature (w.r.t. enrolment at +20 °C) for 40 dif-
ferent ICs. At each temperature 50 PUF responses
have been measured for each device.

3.1.2 Ageing Test

Five ICs have been placed in an oven that was set to an
ambient temperature of +80°C. The core voltage of the ICs
was increased to 1.1¥*VDD, where VDD denotes the normal
operating voltage of the ICs. The ICs were kept under these
conditions for approximately 8 weeks continuously. Every
hour the ICs were repowered and the flip-flop start-up val-
ues were measured. For each device the fractional Hamming
distance between the measured PUF responses and a refer-
ence measurement (taken in the enrollment phase at +20°C
ambient temperature) is computed. The results are depicted

in Fig. 3
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Figure 3: Fractional Hamming distance over time
(spanning 8 weeks) during ageing experiment for 5
different ICs.

The figure shows that during the time the ICs are sub-
jected to ageing conditions (high temperature and increased
core voltage), the Hamming distance with respect to the
reference enrollment measurements is not increasing. The

fractional Hamming distance of the PUF responses remains
well below 10% for all of the tested devices. This is well
within the boundaries of what error correcting codes in the
fuzzy extractor can correct. Although only one specific age-
ing condition was tested here, the results so far are very
promising since no ageing effects are visible.

3.2 Randomness

An important security parameter for PUF's is randomness.
This means that from a set of devices, the PUF responses of
a specific device are random and unpredictable, even given
all the PUF responses of the other devices in the set. The
physical process used as a source of randomness should be
such that

e there is enough entropy in the source across devices;
this means that statistically speaking, each device is
unique, and the probability that two devices have a
PUF response that is ”close” to each other is negligibly
small.

e each PUF response is random and unpredictable; this
means in particular that bits in a PUF response can
only be predicted with negligible probability.

In order to assess the randomness of the PUF responses we
use the following methods:

1. Hamming Weight Test: calculate the Hamming
weight of a set of PUF responses in order to detect
if these strings are biased towards zero or one.

2. Inter-class Uniqueness Test: compute the inter-
class Hamming distances between PUF responses of
different devices in order to assess whether these re-
sponses are unique.

3. CTW Compression Test: use the CTW (Context
Tree Weighting) algorithm |22} 23, [10] in order to find
out whether PUF responses can be compressed. If
(lossless) compression is possible, the PUF responses
do not have full entropy.

4. NIST Randomness Tests: use the PUF responses
of different devices as input for the NIST randomness
test suite |19] to see whether enough PUF responses
pass these tests.

The details of these randomness tests are discussed below.
All tests are performed on the enrollment PUF responses
(measured at +20°C ambient temperature) of 40 different
ICs. Each PUF response consists of the 1024 start-up bits
of the D flip-flops that are present in each IC.

3.2.1 Hamming Weight Test

The fractional Hamming weight of the measured PUF
responses at different temperatures is depicted in Fig.
The Hamming weights of the enrollment measurements (that
have been performed at +20°C), are shown inside the circled
area of Fig. [d

The fractional Hamming Weights of all devices during en-
rollment are between 0.68 and 0.84. Since these values are
significantly larger than 0.5, the measurements are clearly
biased towards one.



Table 2: CTW compression result on concatenated string of 40 times 1024 flip-flop bits

Input data

Input length | Output length | Compression ratio | Optimal context length

PUF reference responses 40960 33282
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Figure 4: Hamming weight over temperature.

3.2.2 Inter-class Uniqueness Test

When performing uniqueness tests, we are interested in
finding out whether it is possible to distinguish between dif-
ferent devices given their PUF responses. This is mandatory
when considering PUFs for authentication purposes or ap-
plications requiring unique identifiers. For our testing pur-
poses, this means that we need to be able to show that no
two devices will have the same resulting identifier or secret
key; as a matter of fact the probability that two identifiers
collide is so low that it is never observed in practice. This
mainly depends on the entropy level available in the devices,
and is a parameter which can be tuned by using more or less
D flip-flops in the system. In Fig. [f] we plot the inter-class
Hamming distance between different devices, and the intra-
class Hamming distance between different measurements on
the same device. The intra-class distribution has been com-
puted by calculating the Hamming distance for each mea-
surement on a device to the measurement that has been
used for enrollment of that specific device. In order to cre-
ate an inter-class distribution, each measurement has been
compared to all measurements that are of a different device.

It can be seen that the noise level of all devices taken
individually remains below 13%. When compared to one
another, the devices exhibit a distance of at least 26%, which
means they are suffficiently different to be able to identify
each one of them uniquely.

In Fig. @ we zoom in on the inter-class distributions. This
distribution can be approximated as a Gaussian distribution,
with mean ¢ = 0.36 and standard deviation o = 0.029.

Because of the bias in the PUF responses this distribution
is not centered around 0.5, which would be the inter-class
distribution with most uniqueness between devices. The
fact that all PUF responses from the different devices con-
tain more ones than zeros therefore leads to less uniqueness
between devices. However all devices are still suffficiently
different (the distance is at least 26%, while intra-class dis-

Hamming Distance distributions, measured over 40 devices
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Figure 5: Intra-class and inter-class distributions of
fractional Hamming distances.
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Figure 6: Inter-class distribution of fractional Ham-
ming distances.

tribution is never larger than 13%) to be able to identify
each one of them uniquely.

3.2.3 CTW Compression Test

The Context-Tree Weighting method (CTW) |22} 23] 21|
is an optimal compression method for stationary ergodic
sources. The compression that CTW achieves on bit strings
is therefore often used as an estimator for the entropy rate,
see for example [5]. We use the CTW compression method
as follows. If the CTW algorithm manages to compress PUF
responses, this indicates that the responses do not have full
entrop, Our test was conducted by first concatenating all

SWith full entropy we mean that the entropy in bits of a
certain bit string is equal to the length of the bit string.



PUF responses into one string of 40 x 1024 = 40960 bits.
Compressing this string with CTW gave the result shown in
table 2l

For each bit in a bit string that is to be compressed, the
CTW algorithm needs a certain context on which it can base
its internal probability tree [22} |23} |21]. We have chosen the
previous bits of the same bit string as context for each bit.
Furthermore we have tested several context lengths between
1 and 20 bits. The optimum context length (with which
CTW achieved the best compression results) was 13 bits, as
is indicated in the 5th column of table 2l

The fact that the PUF responses can be compressed by
CTW, indicates that the PUF responses do not have the full
entropy.

3.2.4 NIST Randomness Tests

The results of the previous tests show that the PUF re-
sponses are not random: the PUF responses are biased to-
wards one, their inter-class fractional Hamming distance is
not centered around 50% and the PUF responses can be
easily compressed by CTW. Already from the fact that bits
in the PUF responses are clearly biased towards one, it is
clear that these PUF responses will not pass the NIST ran-
domness tests (for instance the frequency test will not be
passed). Therefore the NIST randomness tests are omitted
here.

4. PROCESSING

In order to make the PUF responses usable for crypto-
graphic applications, processing needs to be applied that
removes the bias that is present in these responses. For this
purpose two non-cryptographic processing methods have been
examined.

The reason for using non-cryptographic processing for re-
moving bias is that the properties of cryptographic pro-
cessing will make resulting strings appear to be random,
even when this is not true. Given the limited amount of
data that is available for performing randomness tests (40
PUF responses of 1024 bits each), using cryptographic post-
processing, such as hashing for instance, will always make
the resulting strings seem random. Patterns that might oc-
cur due to limited entropy of the input of the hash can only
be detected when more data is available for statistics. In
a practical application however (when data is not used for
randomness testing), cryptographical processing can be used
to randomize PUF responses.

The processing methods that have been examined reduce
the number of bits in order to increase the source’s entropy
per bit. The first method used is the Von Neumann extrac-
tor [17]. This method extracts randomness from the tempo-
ral ordering of ones and zeros. In this case PUF responses
are scanned from left to right while reading non-overlapping
successive pairs of bits. If the two bits of a pair differ, the
first bit will be used in the resulting bit string. If the two
bits are equal a pair will simply be ignored, while moving
on to the next pair. This process is depicted in Fig. m The
Von Neumann extractor requires a high number of bits as
input, compared to the number of output bits.

Each PUF response has a length of only 1024 bits. Apply-
ing the Von Neumann extractor to these responses results
in bit strings with an approximate length of 200 bits. Since
biasing is not reduced completely by the extractor (i.e. the
number of ones is still larger than the number of zeros in
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Figure 7: The Von Neumann extractor principle.

all of the resulting bit strings), a second processing step is
required. It is not possible to use the Von Neumann twice
on the PUF responses, because the length of the resulting
bit strings will be insufficient for use in the fuzzy extractor.
Therefore, a second method of processing is required.

The second method consists of splitting a string into x
non-overlapping substrings of equal length. These substrings
are combined into a single output bit string by XOR-ing
them together. Adding two independent biased random se-
quences of bias € together reduces the bias of the resulting
sequence to 2¢® (piling-up lemma [15]). In our case the se-
quences cannot be considered independent, but adding sev-
eral substrings of a fixed length together will iteratively re-
duce the bias to the required level. Using these two post-

Table 3: Post-processing methods

Name of resulting Von XOR | bit string
data set Neumann length
1VNM3XOR 1 3 69
0VNM4XOR 0 4 256
0VNM5XOR 0 5 204
0VNM6XOR 0 6 170

processing methods, four different data sets were created
from the PUF responses. Each data set consists of 40 bit
strings with equal length. Table [3| presents these data sets
and shows the way they have been formed. The name of each
data set is based on the processing that has been performed
to create it. For example: "1VNM3XOR’ has been created
by applying the Von Neumann extractor once and splitting
the resulting string into 3 substrings of equal length, which
are XOR~ed together in order to get the resulting set of 40
bit strings.

Table 4: Nr. of bit strings that fail freq. test

Frequency test | «a = 0.1 | « =0.05 | a = 0.01
1VNM3XOR 5 5 2
0VNM4XOR 7 4 3
0OVNM5XOR 5 4 1
O0VNM6XOR 2 1 0

In order to determine which of these data sets is most
likely to possess the required randomness, two basic ran-
domness tests from [16] have been performed on all of these
sets: the frequency and the serial test. The results of both
tests can be found in tables[d and Bl These tables show how
many of the 40 bit strings of each data set do not pass the



Table 6: CTW compression results on derived bit strings

Input data

Input length | Output length | Compression ratio | Optimal context length
PUF reference responses 6800 6807 -

100%

Table 5: Nr. of bit strings that fail serial test

Serial test a=01|a=005|a=0.01
1VNM3XOR 5 3 2
0OVNM4XOR 9 7 2
0OVNM5XOR 5 4 2
0OVNM6XOR 1 0 0

randomness tests for different values of a. The significance
level « of the test of statistical hypothesis Hy is the proba-
bility of rejecting Ho when it is true. In this case Hp is the
hypothesis that the input of the test has been created by a
truly random source.

Based on the results from tables@and data set '0VNM6XOR’

was chosen to be most likely to have properties of a collec-
tion of random bit strings. The reason for this choice is that
it is the only data set where the number of strings that fail
the two basic tests is always smaller than 40 x a.

In the remainder of this section the randomness of this
data set is examined more thoroughly by applying the same
methods as in section Bl The details of these randomness
tests are discussed below. All tests are performed on the 40
bit strings of data set '0VNM6XOR’.Each bit string consists
of 170 bits.

4.1 Hamming Weight Test

The fractional Hamming weight of the 40 bit strings is de-
picted in Fig.[8] As can be seen in this figure, the Hamming
weights of the bit strings are now centered around 50%.
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Figure 8 Hamming weight of bit strings from 40
different devices (after processing).

4.2 Inter-class Uniqueness Test

Each bit string from 'OVNM6XOR’ has been compared
to the bit strings that were derived from all other devices
by computing the mutual Hamming distance. The results
are plotted as a histogram in Fig. [J] As can be seen in
this figure, the distribution is perfectly centered around a
mean of p = 0.50 with standard deviation o = 0.038. This
distribution shows that there is more uniqueness between the

strings from '0OVNM6XOR’ compared to the PUF responses,
because this distribution is centered around 0.5.
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Figure 9: Inter-class distribution of keys after bias
reduction.

4.3 CTW Compression Test

In order to perform the CTW compression test, we first
concatenate all the bit strings into a single bit string of
length 40 x 170 = 6800 bits. Compressing this string with
CTW gives the result shown in table @

We have chosen the previous bits of the same bit string as
a context for the compression of each bit. Furthermore we
have tested several context lengths between 1 and 20 bits.
All of the tested context lengths give the same compression
result in this case. This clearly shows that CTW cannot
further compress the derived bit strings.

4.4 NIST Randomness Tests

In order to evaluate the randomness of data set
’OVNM6XOR’, randomness tests from the Special Publica-
tion 800-22 issued by the National Institute of Standards
and Technology (NIST) [19] have been used. The signifi-
cance level of each test in NIST SP800-22 is set to 1%, which
means that 99% of the test samples will pass the tests if the
random numbers are truly random. We evaluate the passing
ratio of tests with 40 samples. When the number of samples
are n and the probability of passing each test is p , then
the number of samples that pass the test follows a binomial
distribution. Based on this distribution, the value of p’ (ob-
served ratio to pass test) should be between the following
values (|19]):

1— . 01
o :p:t?)\/y - 0,9913,/09%% > 0.9428 (1)

Furthermore, a P-value is introduced to evaluate whether
the sequence of results per randomness tests are uniformly
distributed in order to indicate randomness. This uniformity



Table 7: NIST randomness tests
NIST test p P-value | PASS/FAIL | Settings
Frequency (monobit) test 1.000 | 0.057146 PASS
Frequency test within a block 1.000 | 0.534146 PASS block-size = 20
Runs test 0.975 | 0.090936 PASS
Test for longest run of ones in block | 1.000 | 0.242986 PASS block-size = 8
Serial test 1.000 | 0.015065 PASS m =4
Approximate entropy test 1.000 | 0.242986 PASS m=4
Cumulative sums (Cusum) test 1.000 | 0.048716 PASS mode = forward

is determined by a 2 test, which produces the P-value. In
order to indicate randomness, this P-value should be at least
0.0001 (|19]). Therefore a NIST test is only passed when:

p' >0.9428 N P-value > 0.0001 (2)

The results from the performed NIST randomness tests can
be found in table [l In this table it can be seen that the
strings from data set '0VNM6XOR’ pass all the NIST ran-
domness tests that we are able to perform. Note that we
have limited our test set to those tests that can be performed
with bit strings of length 170 bits. The NIST randomness
tests that require larger input bit strings have been omitted.

S.  CONCLUSIONS

In this paper we have shown that after all D flip-flops
contain sufficient randomness in their start-up behaviour to
qualify as a strong, randomly distributed but reliable Phys-
ically Unclonable Function. We have presented a processing
method that is able to remove the bias that is naturally
present in the start-up values of D flip-flops: splitting the
PUF responses into 6 parts and XOR-ing those parts into a
single bit string. After applying this method, the derived bit
strings pass the NIST randomness tests. We have assessed
the reliability of D flip-flop PUFs over a large range of dif-
ferent temperatures and have shown that static ageing does
not degrade the PUF responses. As a result we believe that
D flip-flops offer great promise for implementing secure key
storage and key derivation mechanisms for security sensitive
applications in which one is reluctant to store the key within
the system when the power is turned off.
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