
Adapting Voltage Ramp-up Time for Temperature
Noise Reduction on Memory-based PUFs

Abstract—The efficiency and cost of silicon PUF-based appli-
cations, and in particular key generators, are heavily impacted
by the level of reproducibility of the bare PUF responses
under varying operational circumstances. Error-correcting codes
can be used to achieve near-perfect reliability, but come at a
high implementation cost especially when the underlying PUF
is very noisy. When designing a PUF-based key generator, a
more reliable PUF will result in a less complex ECC decoder
and a smaller PUF footprint, hence an overall more efficient
implementation. This paper proposes a novel insight and resulting
technique for reducing noise on memory-based PUF responses,
based on adapting supply voltage ramp-up time to ambient
temperature. Circuit simulations on 45nm Low-Power CMOS,
as well as actual silicon measurements are presented to validate
the proposed methods. Our results demonstrate that choosing
an appropriate voltage ramp-up for enrollment and adapting it
according to the ambient temperature at key-reconstruction is
a powerful method which makes memory-based PUF response
noise up to three times smaller.

I. INTRODUCTION

In recent years, silicon Physically Unclonable Functions
(PUFs) [1] have been well established as innovative hardware
security primitives. Numerous constructions have been pro-
posed and implemented (see, e.g., [2] for an overview), and
their interesting properties are being extensively investigated
in large scale experiments [3–5]. A silicon PUF’s ability to
generate device-unique fingerprints based on deep-submicron
silicon process variations makes it a highly practical tool for
device identification. In addition, the intriguing and unparal-
leled property of physical unclonability is a strong foundation
for deploying a silicon PUF as a security primitive.

Combined with proper post-processing, a PUF is able to
generate secret keys of cryptographic strength [6,7], and reli-
ably store them in a highly secure manner without the need for
conventional on-chip Non-Volatile Memory (NVM). The key
is derived from the device-intrinsic randomness which is eval-
uated by the silicon PUF. The main purpose of a PUF-based
key generator is twofold: i) increasing the reproducibility of a
typically noisy PUF evaluation to near-perfect reliability, and
ii) accumulating sufficient unpredictability of possibly low-
entropic PUF responses into a highly unpredictable crypto-
graphic key. It is evident that the natural reproducibility and
unpredictability of a bare silicon PUF implementation have a
strong impact on the efficiency, and hence on the cost of a
PUF-based key generator as a whole. A PUF with less noisy
and more random responses will result in a key generator
which requires less “PUF material”, and hence less silicon
area, to produce a reliable cryptographic key.

To produce a key with a practically acceptable reliability
level (e.g., failure rate ≤ 10−6), a PUF-based key generator
based on a fuzzy extractor [8,9] uses Error-Correcting Codes
(ECC) to correct noisy PUF responses.These ECC techniques
are very effective in boosting the reliability but tend to be
computationally intensive. Moreover, the helper data, which is
an unavoidable byproduct of the fuzzy extractor, will partially
disclose the unpredictability of the bare PUF responses. This
needs to be compensated for by using more PUF material and
hence a larger PUF. Both the complexity of the ECC decoder,
and the amount of randomness loss due to the helper data,
scale with the required error correction capability of the ECC,
i.e. less reliable PUF responses will result in a more complex
decoder and a larger silicon PUF footprint. Hence, there is a
strong incentive to use a PUF construction with an as high as
possible reproducibility of its bare responses. This objective
is seriously complicated by the reproducibilty deterioration of
silicon PUFs when subjected to varying operating conditions,
like temperature and supply voltage variations.

Substantial research effort has been put into reliability
enhancement of PUF-based key generators. Careful selection
of the right ECC algorithms minimizes the helper data loss
and decoder implementation cost [10,11]. On a physical level,
construction improvements have been proposed to decrease
the noise level of the bare silicon PUF responses directly, by
modifying the PUF circuit [12,13] or the wafer mask set [14].
Analyzing a silicon PUF’s susceptibility to its operating con-
ditions has been explored for reliability enhancement [15,16].

In this work, we take this one step further by considering
the combined effect of different operating parameters, in
particular temperature and supply voltage ramp-up time, and
their impact on the reproducibility of SRAM memory-based
PUF responses. It is well known that temperature impacts
the switching speed of electronic devices and contributes to
electronic noise [3], whereas the voltage ramp-up time (i.e.,
the time it takes to reach the operational supply voltage after
power-on) influences the power-up state of an SRAM [17,18].
This paper shows that intelligent matching of voltage ramp-
up time to ambient temperature significantly improves the
reproducibility of PUF responses at extreme temperatures,
with noise levels up to 3× smaller than without matching.
Moreover, this effective technique requires only a small num-
ber of additional building blocks and does not impose any
modifications to the actual standard memory cell circuit. These
effects are demonstrated, both in simulation and actual silicon
measurements for SRAM PUFs [6,17], and in silicon only for
other memory-based PUF types [19–22].
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Fig. 1: SRAM Cell transistor level schematic.

The remainder of this paper is organized as follows. Section
II provides a brief background on memory-based PUFs and
PUF-based key storage. Section III discuses the simulation
setup, including the noise metric, and the simulation results.
Section IV details the silicon measurement setup, including the
optimization algorithms used and the achieved improvements.
The obtained results are discussed in more detail in Section
V, and Section VI provides possible implementation options.
Finally, Section VII concludes the paper.

II. BACKGROUND: PUFS AND KEY GENERATION

This section first briefly provide some preliminaries on the
basic operation of memory-based PUFs. Then, it shows how
PUFs are deployed in a key storage system, and thereafter it
gives the PUF’s main quality metrics.

A. Memory-based PUFs

Memory-based PUFs [6,19–22] comprise bistable circuits,
i.e., having two possible stable states denoted as logic ‘0’
and ‘1’. Fig. 1 shows a typical six-transistor SRAM cell
with at its core a basic bistable circuit consisting of two
cross-coupled inverters, respectively formed by (Q1, Q3) and
(Q2, Q4). The peripherical circuitry used to access the cell is
comprised by two pass transistors (Q5 and Q6), the bitline,
the complement bitline and the wordline. When powered-up,
the cross-coupled inverters start driving electric current, hence
increasing the voltages at their gates (Vin and Vout). The first
inverter that builds enough gate voltage to drive its NMOS
(i.e., NMOS Vth) will pull-down its output, forcing the other
inverter to pull-up and causing the SRAM cell to setlle in one
of both stable states. Since both inverters are designed to be
nominally identical, the outcome (in which of both states a cell
settles) is entirely determined by the effect of random process
variations. An SRAM cell power-up state is hence in effect a
PUF response, and the corresponding construction is called an
SRAM PUF [6].

B. PUF-based Key Generation and Storage

Fig. 2 shows the basic flow of a PUF-based key generation
and storage system [6,7] based on a fuzzy extractor [8,9],
which typically consists of two phases:
(a) Enrollment: a key is generated from a PUF Reference

Response (PRR) as shown in Fig. 2(a). First, the PUF
is evaluated and produces the PRR. Next, the PRR is
processed by the fuzzy extractor into a cryptographically
strong key, and helper data is generated as a byproduct
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Fig. 2: Operations of a PUF based Key Storage System.

of the fuzzy extractor’s internal ECC method. Finally,
the helper data is stored in an external NVM (and hence
becomes public information).

(b) Reconstruction: the earlier enrolled key is reliably re-
covered from a noisy PUF Response (PR) and the stored
helper data as shown in Fig. 2(b). First, the PUF is
evaluated again and produces the noisy PR. Next, PR is
processed by the fuzzy extractor in combination with the
helper data which is retrieved from the external NVM. If
the noisy PR is close enough to the PRR obtained during
enrollment (i.e. the PUF response is reproducible upto a
limited amount of noise), then the extractor succeeds in
reliably reconstructing the enrolled key.

C. PUF Properties

The two most basic quality measures of a PUF implementa-
tion are reproducibility: expressing how reliable a response can
be reproduced on a single device, and uniqueness: expressing
the difference between responses coming from distinct devices.

1) Reproducibility: A fuzzy extractor needs to be designed
to cope with the worst-case expected difference between PRR
at enrollment and PR at reconstruction in order to obtain a
reliable key generation. The noise on a PUF response is typi-
cally expressed as the relative number of bit flips between the
enrollment PRR and the PR during reconstruction. The smaller
the expected noise, and hence the higher the reproducibility of
the PUF responses, the more efficient the overall PUF-based
key generation system can be implemented.

2) Uniqueness: To generate a secure key, a fuzzy extractor
requires that a PUF response is unpredictable, even when other
responses on the same PUF or access to other PUFs are given.
This entails that:
• The probability that two different PUFs have responses

close to each other should be negligible, i.e., PUF re-
sponses are highly unique and the expected amount of
differing bits is close to 50%.

• The bits in a specific PUF response should be highly ran-
dom and independent, i.e., each bit provides a negligible
amount of information about the remaining response bits,
and the relative entropy of each response is large.

III. SIMULATIONS

A memory system comprising a cell and peripheral circuitry
is synthesized and simulated using SPICE, to analyze the
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Fig. 3: SRAM PUF simulation.

reproducibility of memory-based PUFs by adapting the voltage
ramp-up time to the environmental temperature. In this section,
first, the PUF fingerprint generation is presented. Second, the
metric used to evaluate noise is discussed. Finally, simulation
experiments and results are described.

A. SRAM PUF Response Simulation

Each bit of an SRAM PUF response is generated by an
individual SRAM cell. Fig. 3 shows the SRAM fingerprint
generation schematic used in our simulations. It has been
shown in [17] that the threshold voltage Vth of NMOS
transistors is the technology parameter with the most impact
on the start-up value of an SRAM cell. Hence, Monte Carlo
method is used to generate 1000 random values of Vth for Q1

(see Figure 1) according to the distribution presented in [23],
i.e., mean µ = standard NMOS Vth and deviation σ = 9% ·µ.
These 1000 SRAM cells combined create an SRAM cell array
that generates a unique and random 1000-bit response after
power-up.

B. Noise Metric

To analyze the noise we read the PR of the simulated SRAM
cell array for different voltage ramp-up times (tramp) and
different temperatures (Temp). Then, the Fractional Hamming
Distance (FHD) of each measured response compared to the
enrollment response (PRR) is calculated; this is the number of
differing bits normalized to the response length.

C. Simulation Experiments

To investigate the impact of the voltage ramp-up time tramp

on the noise at different temperatures Temp, we consider
a range of values for both tramp and Temp for 45nm Low
Power (LP) [24]. For each combination of Temp and tramp

we simulated the power-up of the SRAM cell array 20 times
and read its response. The transient noise during power-up
is randomly generated by the simulation tool, hence three
variable parameters are used for the simulation:
• Voltage ramp-up time: 3×tramp (10µs, 50µs and 90µs),
• Temperature: 3× Temp (−40◦C, +25◦C, +85◦C ) and,
• Measurements: 20×Meas (each with a random seed).

Hence, a total of (3 × tramp) × (3 × Temp) × (20 ×Meas) ×
(1000× Vth) = 180,000 simulations are performed.

D. Simulation Results

Fig. 4 shows the results of FHD calculations per tramp and
Temp considering enrollment performed at +25◦C with tramp

of (a) 10µs, (b) 50µs and (c) 90µs.

TABLE I: Description of devices used in validation.

Technology # ICs # PUF inst. / IC Total # PUF inst.

BK DFF SRAM BK DFF SRAM

40nm LP 5 - - 3 - - 15
65nm LP 50 2 4 4 100 200 200
130nm LP 16 - 1 1 - 16 16

From Fig. 4(a) it can be seen that for Temp below the
enrollment (+25◦C), maxFHD is lower if tramp is longer
than the one used for enrollment. However, at Temp above
the enrollment, the opposite is true, e.g., at +85◦C, key-
reconstruction with 10µs generates the lowest maxFHD while
at −40◦C, that is true for 90µs.

Fig. 4(b) and (c) report similar results but now for other tramp

at enrollment (50µs and 90µs). Following the trend observed
previously, for Temp below enrollment (+25◦C), maxFHD is
lower if tramp is longer than the one used during enrollment;
e.g., considering Fig. 4(b), at +85◦C, key-reconstruction with
10µs generates the lowest maxFHD while at −40◦C, that is
true for 90µs.

IV. SILICON VALIDATION

The theoretical results from the simulations are validated in
an experiment using silicon devices. For this purpose, mea-
surements are performed on three different types of memory-
based PUFs: the SRAM PUF [6,17], the D flip-flop (DFF)
PUF [20] and the buskeeper (BK) PUF [21].

A. Test Set-up

The considered memory-based PUF types are manufactured
in three different LP technology nodes. Table I provides an
overview of all devices citing the technology node, the number
of available integrated circuits (ICs), the number of PUF
instances per IC in the given technology (if any), and the total
number of tested instances of each PUF type. Note that each
IC contains one or more PUF instances.

Measurements are performed at three different temperatures
(−40◦C, +25◦C and +85◦C)1 and for ten different tramp

varying from 10µs to 500ms. In case of the 40nm SRAM,
the shortest possible tramp is 50µs due to specific capacitive
load. The measurements flow is as follows:

1) The ICs are placed in a climate chamber and connected
to a programmable power supply.

2) Climate chamber is set to one of the test temperatures.
3) ICs are powered with a tramp from the test set.
4) Each PUF device response is read and stored in a file.
5) The ICs are powered down for 1 second.
6) Steps 3 to 5 are repeated 9 times (i.e. 10 measurements

per PUF per temperature per tramp).
7) Change tramp and repeat steps 3 to 6 (until all values of

tramp have been tested for this temperature).
8) Change temperature and repeat steps 3 to 7.

1Industrial standard for temperature testing of ICs ranges from −40◦C to
+85◦C, which are therefore part of the test as worst case temperatures in
comparison to the enrollment temperature of +25◦C.
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Fig. 4: Maximum Fractional Hamming Distance (maxFHD); enrollment performed at +25◦C with tramp of (a) 10µs, (b) 50µs
and (c) 90µs.

B. Evaluation Metrics

1) Reproducibility: For calculating FHD, first an enroll-
ment response of each PUF instance is measured. Thereafter,
each reconstruction measurement is compared to this enroll-
ment by counting the number of flipped bits and dividing it
by the response length. A key based on the PUF response (as
described in Section II) is reliable if the worst-case FHD under
any stress condition is below the error correction capability
of the ECC. Hence, the smaller FHD (noise), the lower the
required error correction.

2) Uniqueness: We evaluate the uniqueness of the different
PUF implementations by considering (a) the average between-
class Hamming distance (µ-BCHD), and (b) the estimated
min-entropy (H∞) of the measured responses. Note that the
uniqueness is analysed only at enrollment. In the key storage
use case (as described in Section II) only the uniqueness of the
enrollment PUF response is critical, as it is from this response
that the cryptographic key is derived.
µ-BCHD provides an indication of uniqueness. This value

is calculated as follows:
1) The enrollment response of each PUF is measured.
2) The Hamming distance between each pair of enrollment

responses coming from different PUF instances of the
same type is determined (e.g. between all pairs of enroll-
ment responses of 65nm LP SRAM PUFs are computed).

3) The distribution of these between-class distances is de-
termined and the obtained mean value, normalized to the
response length, is µ-BCHD.

Optimally, the obtained distribution should be approximately
Gaussian and µ-BCHD should be very close to 50% [17].

Min-entropy is used to evaluate the intrinsic unpredictability
of the PUF responses. Min-entropy is a pessimistic measure
of the unpredictability of a random variable [8]. We estimate
the min-entropy of the responses of a particular PUF type by
considering the following model: each PUF response bit is
independent of the other bits in the same response and has
an individual probability p1 of being ‘1’ for a random PUF
instance. This model is particularly reasonable for memory-

based PUFs, as each response bit originates from an indi-
vidual memory cell. Under the assumption of this model,
the min-entropy of a single response bit is calculated as
H∞ = − log2 max{p1, 1 − p1}. The value for p1 of a bit
is estimated by counting the number of enrollment responses
for which this bit is ‘1’ and dividing by the total number of
enrollment responses. The min-entropy of the entire response
is simply the summation of the min-entropy of each bit. We
express H∞ as the average min-entropy per bit in a response
value, by dividing the total min-entropy of the response by its
length. Optimally, H∞ of a PUF response bit should be close
to 1. Note that, due the limited number of measured PUF
instances, the obtained estimations of H∞ could be smaller
than the actual min-entropy of these PUF responses.

C. Optimization Algorithms

The silicon test analyses have the objective to investigate the
use of tramp as a technique for increasing memory-based PUF
response reproducibility (noise reduction). As a side effect,
the impact on PUF uniqueness is also investigated. For this
purpose, two optimization algorithms are used:

1) Reproducibility optimization: This algorithm identifies
for each value of tramp at enrollment the tramp configuration
per temperature that leads to the highest reproducibility (lowest
maximum noise) at extreme temperatures.

2) Uniqueness optimization: This algorithm identifies the
enrollment tramp that provides the highest H∞. After this first
step the values of tramp at other temperatures are determined,
which minimize the noise.

D. Measurement Results

In order to evaluate the performance of the optimization
algorithms, the original PUF measurements (without opti-
mization) need to be analysed first. Table II shows the
original measured maximum noise values for the considered
temperatures as well as uniqueness indicators. These values
are obtained using the shortest possible tramp for each PUF.
As stated before, the noise is determined using 10 response
measurements per PUF per temperature.
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TABLE II: Measurement results without optimization.

Technology PUF tramp
Maximum noise FHD

µ-BCHD H∞
−40◦C +25◦C +85◦C

40nm LP SRAM 50µs 23% 6% 20% 0.50 0.73

65nm LP
SRAM 10µs 8% 6% 8% 0.50 0.87
DFF 10µs 28% 8% 25% 0.37 0.40
BK 10µs 10.5% 4.5% 20% 0.48 0.75

130nm LP SRAM 10µs 13% 6% 12% 0.47 0.66
DFF 10µs 16.5% 5% 28% 0.43 0.61

Table II reveals that overall the maximum noise measured
at −40◦C is 28% (for the 65nm DFF PUF), at +25◦C is
8% (for the 65nm DFF PUF), and at +85◦C is 28% (for the
130nm DFF PUF). Regarding uniqueness, although a truly
fair comparison is not possible due to the different number
of devices available per technology node and PUF type,
the 65nm DFF PUF has the lowest µ-BCHD = 0.37 and
H∞ = 0.40.

1) Reproducibility optimization: Table III presents the
results of the reproducibility optimization algorithm; it shows
the tramp configuration that minimizes the noise (maximizes
the reproducibility) per temperature in comparison to the
enrollment. The results show that for all tested PUFs, adapting
tramp to the ambient temperature has a major impact on the
maximum noise. For low temperatures, noise reduction is
realized with longer tramp; whereas for high temperatures,
this is realized with shorter tramp; e.g., the maximum noise
for the 65nm LP DFF PUF at −40◦C with tramp = 10µs
for both enrollment and reconstruction was originally 28%.
If the optimized tramp is used both at the enrollment (500µs
at +25◦C) and at reconstruction (50ms at −40◦C), then
the maximum noise is reduced to merely 11.5%. Note
that all results in Table III demonstrate the same trend as
predicted by the simulation results of Section III-D. Since
this algorithm does not optimize the uniqueness, µ-BCHD
and H∞ decrease for some PUFs (e.g. the 130nm SRAM
PUF), while they increase for others (e.g. the 65nm DFF PUF).

2) Uniqueness optimization: Table IV reports the results
of the uniqueness optimization algorithm; it shows (a) the
tramp at enrollment that maximizes uniqueness and (b) the
tramp for the other temperatures that results in the lowest
maximum noise (with respect to the tramp selected for enroll-
ment). Uniqueness indicators µ-BCHD and H∞ are at least
as high as the originals for 40nm and 130nm SRAMs, and
for the remaining devices these indicators are higher than
the original indicators. The uniqueness optimization algorithm
clearly leads to significant improvements in µ-BCHD and H∞
for the tested DFF and buskeeper PUFs. Improvements for the
SRAM PUFs from all tested nodes are negligible. Since this
algorithm does not select the enrollment tramp optimized for
reproducibility, it is natural that the noise resulting from this
algorithm is worse than that of reproducibility optimization
algorithm. In case of the 65nm SRAM PUF, the maximum

TABLE III: Results after reproducibility optimization.

Technology PUF tramp Maximum noise FHD
µ-BCHD H∞

−40◦C +25◦C +85◦C −40◦C +25◦C +85◦C

40nm LP SRAM 10ms 1ms 50µs 14% 4.5% 17% 0.49 0.71

65nm LP
SRAM 50ms 250µs 10µs 7% 5.5% 7% 0.50 0.89
DFF 50ms 500µs 25µs 11.5% 5% 9% 0.49 0.84
BK 500ms 1ms 25µs 6.5% 4% 6.5% 0.46 0.69

130nm LP SRAM 500ms 10ms 1ms 5.5% 2% 5% 0.37 0.42
DFF 500ms 10ms 500µs 12.5% 2.5% 8.5% 0.45 0.67

TABLE IV: Results after uniqueness optimization.

Technology PUF tramp Maximum noise FHD
µ-BCHD H∞

−40◦C +25◦C +85◦C −40◦C +25◦C +85◦C

40nm LP SRAM 1ms 100µs 50µs 16% 6% 19% 0.50 0.73

65nm LP
SRAM 50ms 100ms 50µs 13% 2% 8% 0.50 0.89
DFF 500ms 10ms 250µs 18.5% 2.5% 8% 0.50 0.90
BK 100ms 250µs 10µs 7% 5% 9% 0.50 0.88

130nm LP SRAM 1ms 10µs 10µs 7.5% 6% 12% 0.47 0.66
DFF 50ms 500µs 10µs 10% 4.5% 9.5% 0.47 0.67

noise at −40◦C is even worse than the measurements without
optimization. Reason for this is that the tramp at enrollment
(+25◦C) is very long and the algorithm is unable to find a
corresponding longer tramp at −40◦C.

V. DISCUSSION

SPICE simulations show that using long tramp at low temper-
atures and short tramp at high temperatures results in reduced
SRAM PUF response noise when compared to enrollment. The
observation is validated using silicon measurement, and re-
gardless of the technology node and memory PUF type. Hence,
choosing appropriate tramp according to ambient temperature,
including enrollment, can be used as an efficient scheme to
reduce noise and increase reproducibility.

Moreover, the silicon measurements have also indicated that
varying the voltage ramp-up time can have a significant impact
on the uniqueness of memory-based PUFs. By choosing the
appropriate optimization algorithm according to the PUF type,
noise can be reduced while either maintaining or increasing
the uniqueness indicators. Inspecting the silicon results with
regard to reproducibility and uniqueness we conclude the
following:
• SRAM PUFs benefit from applying the reproducibility

optimization algorithm, but the uniqueness optimization
algorithm is not very effective as there is very little
margin for improvement. Furthermore, the uniqueness
optimization algorithm does not minimize the noise well
for the tested SRAMs.

• Buskeeper and DFF PUFs benefit from applying the
uniqueness optimization algorithm, since the original
silicon results show that there is a lot of room for im-
provement. Besides increasing the PUF response unique-
ness, the proposed algorithm also decreases the noise at
extreme temperatures. Hence, this algorithm works very
well for these PUF types.

VI. IMPLEMENTATION CONSIDERATIONS

The proposed scheme can be implemented by a simple
circuit consisting of a voltage regulator and a temperature
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Fig. 5: Schematic of an extended SRAM PUF design.

sensor. Fig. 5 shows an example of such a circuit, comprising
five blocks, an SRAM PUF, a voltage ramp-up regulator, an
embedded temperature sensor, an ADC and a controller.

The circuit performs five main steps. First, the temper-
ature sensor senses the ambient temperature. Second, this
temperature is used as an input to the ADC that converts
the given temperature to the closest digital temperature Temp.
Third, according to Temp the Controller is calibrated and the
tramp that minimizes the FHD (noise) is produced. Fourth, the
voltage ramp-up regulator powers-up the SRAM PUF with the
assigned tramp and finally, the SRAM PUF generates a PUF
response.

One of the main advantages of the proposed optimization
technique, besides its evident effectiveness, is that its imple-
mentation demands no adaptations of the memory-based PUF
circuit itself. In fact the basic PUF comprises only standard
library memory cells, but needs to be placed in its own power
domain and extended with an embedded temperature sensor
and a voltage ramp-up regulator. A small controller regulates
the optimal ramp-up time of the memory-based PUF to the
sensed temperature, based on a prior calibration. The general
design of these extensions is schematically shown for an
SRAM PUF in Fig. 5. Since the concerned building blocks are
all rather standard, the implementation effort of the proposed
optimization technique is considered minimal, in particular in
relation to the large obtained gain in PUF reproducibility as
demonstrated in Section IV.

VII. CONCLUSION

In this paper, we proposed a method based on adapting
the voltage ramp-up time to the ambient temperature for
enhancing the reproducibility of memory-based PUFs. The
combined effect on PUF reproducibility has been evaluated
using both circuit simulation (in 45nm LP CMOS) and actual
silicon measurements (in 45nm, 65nm and 130nm LP CMOS).
The results are highly effective, showing a major decrease in
worst-case PUF noise (up to 3× lower for particular PUFs) at
extreme temperatures. A significant advantage of the proposed
noise-reduction technique is that it can be implemented with-
out altering existing memory-based PUF circuits, but merely
by extending them with some relatively standard building

blocks. The application of the proposed techniques will result
in a significantly reduced complexity and a smaller footprint of
a PUF-based key generator. The reproducibility enhancement
is achieved while either mantaining or increasing the uniquess.
Future work will include investigating the proposed techniques
for alternative memory-based PUFs and other silicon tech-
nologies, and implementing the extensions to enable them in
silicon.
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