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ABSTRACT
The generation of high quality random numbers is crucial
to many cryptographic applications, including cryptographic
protocols, secret of keys, nonces or salts. Their values must
contain enough randomness to be unpredictable to attack-
ers. Pseudo-random number generators require initial data
with high entropy as a seed to produce a large stream of
high quality random data. Yet, despite the importance of
randomness, proper high quality random number generation
is often ignored. Primarily embedded devices often suffer
from weak random number generators. In this work, we
focus on identifying and evaluating SRAM in commercial
off-the-shelf microcontrollers as an entropy source for PRNG
seeding. We measure and evaluate the SRAM start-up pat-
terns of two popular types of microcontrollers, a STMicro-
electronics STM32F100R8 and a Microchip PIC16F1825.
We also present an efficient software-only architecture for
secure PRNG seeding. After analyzing over 1 000 000 mea-
surements in total, we conclude that of these two devices,
the PIC16F1825 cannot be used to securely seed a PRNG.
The STM32F100R8, however, has the ability to generate very
strong seeds from the noise in its SRAM start-up pattern.
These seeds can then be used to ensure a PRNG generates
high quality data.
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1. INTRODUCTION
The generation of high quality random numbers is crucial

to many cryptographic applications. Almost every crypto-
graphic protocol involves the use of keys, nonces or salts
which are unpredictable to attackers. Such values must ex-
hibit a sufficient degree of randomness, i.e., contain enough
entropy. In addition, re-keying is applied regularly to prevent
a wear-out effect of secret keys. Finally, public-key cryptosys-
tems, such as RSA and ElGamal, rely on random numbers
to generate public/private key pairs.
Yet, despite its importance, proper high quality random

number generation is often ignored. Random data with too
little entropy results in weak keys, nonces or salts, which
can then be guessed with minimal effort, thereby compro-
mising even the strongest cryptosystem. Hence, the quality
of random data ultimately affects the level of security of
cryptographic primitives and protocols in practice. Although
many cryptographically secure pseudo-random number gen-
erators (PRNG) exist, all of them require to be seeded with
initial data containing sufficient entropy. Once seeded, they
are able to generate high quality random output for long
periods of time. Providing PRNGs with a low quality initial
seed, however, will cause them to generate weak, predictable
output.
Neglecting to ensure sufficient entropy in PRNG seeds

gave rise to several security incidents. A famous case was
the OpenSSL implementation in Debian [14]: by accidentally



decreasing the number of available randomness sources for
seeding, the generated random numbers became predictable.
This incident affected numerous TLS/SSL connections, keys
for SSH accounts, as well as the security of Tor users [4]. More
recently, Heninger et al. [7] and Lenstra et al. [10] conducted
an Internet-wide survey and looked for security problems in
public keys and certificates of TLS and SSH servers, caused
by low quality random number generation. The authors were
able to recover private keys of several devices due to com-
mon factors in public RSA keys. Their results indicate that
primarily embedded devices, such as routers, firewalls and
VPN appliances, are affected. The source of these problems
are likely PRNGs that were not seeded with high entropy
data on start-up.
In this work, we focus on identifying and qualifying Static

Random Access Memory (SRAM) in commercial off-the-shelf
(COTS) microcontrollers as an entropy source for PRNG
seeding. We take advantage of the fact that the start-up
values of SRAM are noisy. This noise is collected upon boot
time to derive a high quality, high entropy PRNG seed by
applying a hash function to the initial memory contents. We
measure and evaluate the entropy in SRAM start-up patterns
in two common types of microcontrollers, an STMicroelec-
tronics STM32F100R8 (ARM Cortex-M3) and a Microchip
PIC16F1825. Furthermore, we suggest an architecture for
seed extraction and pseudo-random number generation, which
makes efficient use of the available resources in a COTS mi-
crocontroller.
The paper is structured as follows. After surveying related

work in Section 2, we analyze and evaluate the noise in the
SRAM start-up patterns of the aforementioned microcon-
trollers in Section 3. In Section 4, we present the architec-
ture for an efficient SRAM-based secure seed generator and
PRNG. Furthermore, we present our attacker model and
discuss practical aspects relating to the implementation of
our architecture. Finally, we conclude the paper in Section 5.

2. RELATED WORK

Random number generation.
In order to generate random numbers for cryptographic

applications on microcontrollers, two basic methods can be
used. The first method requires a physical source, which is
truly random and from which bits can be derived directly.
Such non-deterministic sources derive their randomness from
underlying physical properties that exhibit unpredictable
behaviour. Examples of such sources of randomness in chips
are free running oscillators connected to a shift register [18]
and noise on the lowest bits of AD converters [16], but many
more exist. There are two important downsides to most
of these physical RNG constructions. Firstly, they require
specific hardware to extract the randomness from the physical
entities on the device. Secondly, the throughput of such
RNGs is generally relatively low. This is problematic when
large streams of random bits are required for cryptographic
applications.
The second approach to generate randomness is by using

PRNGs, which are deterministic algorithms. An introduction
to PRNGs can be found in [1]. The output of such a generator
only seems random to observers without prior knowledge.
However, if an observer knows which data has been used as
a seed for the PRNG, then he will be able to calculate all
output values of the generator. Hence, this seed value should

be randomly chosen (and kept secret). The upside of this
type of generator is that it can be implemented completely
in software and therefore does not require any hardware
additions to a microcontroller. Also, it can produce a stream
of (pseudo-)random output bits at a high throughput rate.
The benefits of a PRNG greatly outweigh those of a true

random number generator on a COTS microcontroller. The
necessity of generating a truly random seed is of crucial impor-
tance though. Our goal is to identify and evaluate methods
that can be used to generate strong seeds for a PRNG and
that are already available in COTS microcontrollers, thus
requiring no hardware modifications.

SRAM as sources of entropy.
Our approach of generating a seed value is based on random

noise extracted from the power-up state of SRAM modules,
which are part of COTS microcontrollers. SRAM bit cells are
designed as cross-coupled inverters, which exhibit a bi-stable
behaviour. When powered on these cells eventually settle
from a meta-stable state to a stable state, either zero or one.
It was shown by Guajardo et al. [6] that memory cells are
often biased to zero or one, due to uncontrollable physical
conditions during the manufacturing stage leading to one of
the inverters being slightly stronger than the other. Some
cells, however, will be almost perfectly symmetric, which
leads them to settle to an unpredictable value at start-up. It
is the noise due to these cells which we exploit in order to
generate high quality random seeds.
The general idea of using SRAM as a source for PRNG

seeds was investigated in [8] as well as in [19]. However, the
former paper proposes to use a universal hash to generate
a single random number at start-up. This technique is then
verified on an external SRAM module. However, it is not
investigated whether the approach works on the embedded
SRAM in COTS microcontrollers. In the latter paper, the
feasibility of creating a strong PRNG with the use of random
data from an ASIC containing SRAM-based Physically Un-
clonable Functions (PUFs) [11] is investigated. In contrast,
our goal is to identify COTS microcontrollers which can be
used without any hardware modifications to support high
quality random number generation and hence cryptographic
protocols.
In Mowery et al. [17], the authors gather entropy from the

clock jitter between different clock domains on a CPU. Their
approach is quite slow, however, and obviously does not work
on embedded devices with only a single clock domain. In
cases where their approach is feasible, it can be combined
with our method in order to increase the amount of gathered
entropy.

3. EVALUATION OF ENTROPY IN SRAM
START-UP VALUES

For the purpose of extracting a random seed from SRAM
start-up values, it is important to investigate their entropy
contents. In this section, our approach to quantify the entropy
quality of the SRAM patterns (namely the calculation of
min-entropy) is explained. We will also present the hard-
and firmware used to measure the SRAM start-up pattern
of two popular COTS microcontrollers. Finally, we show
and discuss the measurements for these two devices under
different ambient conditions.



The first investigated microcontroller is the 32-bit STM32F100R8
by STMicroelectronics, an ARM Cortex-M3 chip. The second
one is the 8-bit PIC16F1825 by Microchip, part of Microchip’s
range of high-end 8-bit processors. Both of these chips were
chosen for their popularity. The STMicroelectronics chip was
chosen due to the Cortex-M family being ARM’s fastest
licensing processor family to date. The Cortex-M family was
licensed 168 times by Q4 2012 [12], with 23 billion of these
chips sold last year. Microchip has the 4th largest market
share in the extremely fractioned microcontroller market [13].

3.1 Method of deriving min-entropy
To extract a high quality seed from the SRAM start-up

values we have to examine their randomness properties in
terms of entropy. In particular, the amount of entropy must
be present in the noise of SRAM start-up patterns should
be determined. For this purpose we will be calculating the
min-entropy in the same manner as was done in [19]. This
method is based on the NIST specification [3] that defines
min-entropy as the worst-case (i.e., the greatest lower bound)
measure of uncertainty for a random variable.
For a binary source, we can define the min-entropy as

Hmin = − log2(max(p0, p1)),

where p0 and p1 are the probabilities of 0 and 1 occurring.
Assuming that all bits from the SRAM start-up pattern are
independent, each bit i can be viewed as an individual binary
source. For each of these sources we estimate the probabilities
pi0 and pi1 of powering up in state 0 or 1, by repeatedly
measuring the power-up values of the SRAM. In case m
subsequent measurements are performed, pi0 denotes the
number of occurrences of a zero, divided bym and pi1 = 1−pi0.
For n independent sources (where n is the length of the start-
up pattern), we have:

Hmin =
n∑
i=1

− log2(max(pi0, pi1))).

Hence, under the assumption that all bits are independent,
we can sum the entropy of each individual bit to derive the
min-entropy of the entire SRAM. In the remainder of this
work, we generally denote the available min-entropy as a
percentage of the total available SRAM size.

3.2 Measurement setup
In this subsection, we present the soft- and hardware setup

used to evaluate COTS microcontrollers. First, we present the
functionality and requirements of the firmware that has to be
put into each microcontroller to be measured. Thereafter, we
describe the hardware construction used to extract start-up
values for later evaluation.

Firmware design.
Every microcontroller to be measured should be programmed

with firmware that, on power-up, initializes the serial port
and then starts transmitting the value of each SRAM byte
in sequence. Once finished, it should enter an idle loop. Care
should be taken not to use any of the SRAM storage while
doing this. Most microcontrollers have a several working
registers to store variables, such as a pointer to the current
SRAM byte, and thus this will be easy to achieve. However,
some microcontrollers, such as the Microchip PIC16 family,
only have a single working register and therefore, in order

not to write data to any SRAM byte, some variables will
have to be stored in unused configuration registers.

Hardware setup.
To get some initial measurements of the SRAM power-up

patterns, we first conduct our experiments manually. In this
setup, the microcontroller to be measured has its power lines
and serial port connected to an external serial TTL–to–USB
converter. The converter is connected to a self-powered USB
hub. After an SRAM measurement has been taken, power to
the microcontroller is switched off (i.e. left floating) for at
least 10 seconds. This is to ensure that the microcontroller
has discharged completely and that the SRAM will contain
fresh data on the next power-up. Although this discharging
cycle works fine for the STM32F100R8 devices, it does not
for the PIC16F1825 devices, which keep their SRAM values
for over 10 minutes when their supply pins are left floating.
In order to extract start-up patterns faster and efficiently,

we created a custom measurement board. The requirements
for this board are:

1. Allow connection of many microcontrollers at once.

2. Be extensible with regards to number of attached mi-
crocontrollers.

3. Support remote setup.

4. Make automated, unsupervised measurements possible.

5. Support any realistic baud rate.

6. Support any arbitrary SRAM size.

7. Supply upwards-going, fast rising (≤2 ms) Vcc signals.

8. Actively discharge microcontrollers that are not being
measured.

Requirements 1 and 2 are satisfied by using (de)multiplexers
for the power supply and serial transmission (TX) lines of the
attached microcontrollers. The controller board interfaces
with a PC, thereby meeting requirements 3 and 4. The con-
troller clock signal is generated with a specialized clock, and
the baud rate can also be set though the PC interface, thus
fulfilling requirement 5. Requirement 6 is met by detecting
when the TX line of the currently powered microcontroller
goes idle, at which point the controller board advances to the
next connected microcontroller. In order to generate realistic
start-up patterns, requirement 7 should be met. We used
an oscilloscope to verify that this was the case for our con-
troller board. Finally, requirement 8 is necessary in order to
erase the state of the SRAM completely on power-down. The
demultiplexer on our controller board connects non-active
power lines to ground, thereby this last requirement is met
as well.
A simplified schematic of our design is shown in Fig. 1. In

its current state, it allows us to connect up to 16 microcon-
trollers. This can be extended to at least 1024 devices, in
case this should prove necessary.

3.3 STMicroelectronics STM32F100R8
The first device that has been tested for entropy in the

SRAM start-up values is the STM32F100R8 from STMicro-
electronics. This is a 32-bit ARM Cortex-M3 device with
8 KiB of SRAM. Of this device 10 samples have been used
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Figure 1: High-level schematic of the measurement controller board (left) with a board of microcontrollers
to be measured attached (right).

to perform a large number of measurements. An example of
a start-up pattern (measured at +25 ◦C) of the SRAM in
this microcontroller can be found in Fig. 2.
To make sure that the STM32F100R8 provides sufficient

noise entropy under different circumstances, measurements
have been performed at −30◦C, +25◦C and +90◦C. Using
these measurements the min-entropy has been derived (with
the method described in Section 3.1), the results1 for the
different conditions can be found in Table 1.

Figure 2: Example start-up pattern of STM32-
F100R8 (8 KiB SRAM) at +25 ◦C. White represents
a bit with value 0, black one with value 1.

From the results in Table 1 it is clear that the STM32F100R8
devices contain a minimum amount of 5.2% min-entropy un-
der all tested circumstances. Given the fact that the measured
SRAMs have a size of 8KiB, it is evident that by using these
memories as input for a hash function it is no problem to
derive a truly random seed for a PRNG2. If for example,
1Min-entropy is expressed here as a percentage of the length
of the start-up pattern. Hence, 6.0% in this 8 KiB memory
is approximately equal to 491.5 bytes min-entropy.
2A less extensive evaluation STM32F051R8 and
STM32F100RB devices seems to suggest that other
devices in the STM32 family contain an equally high amount
of entropy in their SRAM start-up patterns.

assuming the entropy is evenly spread out over the entire
SRAM, we would like to derive a truly random seed of 256
bits and consider a min-entropy of 3% (which is on the safe
side, given the lowest min-entropy of 5.2% from the anal-
ysis), the required amount of SRAM to derive this seed is
only 1.04KiB. For a more cautious approach, in which no
assumptions are made about the entropy distribution, see
Appendix B.

3.4 Microchip PIC16F1825
The second commercially available microcontroller that

has been evaluated, is the Microchip PIC16F1825. This is
an 8-bit microcontroller with 1 KiB of SRAM. Under the
same conditions as described in the previous section, a large
number of measurements of the SRAM start-up patterns of
16 different devices have been performed. A plot of one of
these start-up patterns (measured at +25 ◦C) is given in
Fig. 3. It is evident from this plot that there is severe biasing
in the start-up pattern. The plot clearly shows that the bits
from the PIC16F1825 memories possess a pattern which
is far from random. To be more precise: the bits of every
alternating byte have a preference to start-up either as a 0
or a 1. A pattern as can be seen in Fig. 3 is present in every
PIC16F1825 device measured. The preference towards 0 or 1
for each byte results in a lower noise entropy, because it is
less common for these bits to flip since they have a preferred
state to start in. Using these measurements, the min-entropy
of the SRAM noise has been determined in the same way as
for the STM32F100R8 devices. The resulting min-entropies
at different temperatures can be found in Table 2.
In comparison to the results of the STM32F100R8 devices,

it is clear that the noise entropy for the PIC16F1825 is
significantly lower. For the measurements at room and high
temperatures this can be explained by the severe biasing of
the start-up pattern, which has been discussed already. For
the low temperature (at which the min-entropy is very close
to 0 for most of the devices), the reason is different. Our
observation is that at these temperatures the SRAM start-up
patterns exhibit a significant decrease in the Hamming weight
for all tested devices. For all devices the Hamming weight
was very close to 0, which means that almost all bits of the



Table 1: Min-entropy results for STM32F100R8 SRAMs at different temperatures. Min-entropy denoted as
percentage of total available SRAM.

Temp. Microcontroller ID
[◦C] 1 2 3 4 5 6 7 8 9 10
−30 5.3% 5.3% 5.4% 5.5% 5.4% 5.3% 5.4% 5.2% 5.3% 5.8%
+25 6.6% 6.6% 6.7% 6.8% 6.7% 6.5% 6.8% 6.5% 6.7% 6.7%
+90 6.3% 6.5% 6.5% 6.6% 6.2% 6.5% 6.5% 6.2% 6.5% 6.5%

Table 2: Min-entropy results for PIC16F1825 SRAMs at different temperatures. Min-entropy denoted as
percentage of total available SRAM.

Temp. Microcontroller ID
[◦C] 1 2 3 4 5 6 7 8
−30 0.9% 1.0% 0.3% 0.2% 0.5% 0.2% 0.2% 0.2%
+25 1.9% 2.0% 1.8% 1.8% 1.9% 1.9% 1.8% 2.0%
+90 3.2% 3.2% 3.2% 3.8% 3.3% 3.5% 3.7% 3.5%

[◦C] 9 10 11 12 13 14 15 16
−30 0.1% 0.3% 0.1% 0.2% 0.2% 0.8% 1.7% 0.1%
+25 1.7% 1.7% 1.8% 2.1% 1.8% 1.7% 1.6% 1.7%
+90 3.6% 3.6% 3.8% 4.1% 3.3% 3.5% 4.0% 3.7%

Figure 3: Example start-up pattern of PIC16F1825
(1 KiB SRAM) at +25 ◦C. White represents a bit with
value 0, black one with value 1.

memory start-up as a 0 and only very few (in the order of
magnitude of 1%) as a 1. These results clearly show that by
exposing the PIC16F1825 to (extremely) low temperatures it
is possible to make the start-up pattern of the SRAM more
predictable. We shall call this controlled decrease of entropy
a “freezing attack”. Such an attack scenario is outside the
scope of our attacker model (see Section 4.1), since it requires
for an attacker to have physical access to the device to freeze
the memory. However, this phenomenon does present a major
issue for usability of the PIC16F1825, because it will not be
possible to generate sufficient entropy for the PRNG seed
when ambient temperatures are sufficiently low (e.g. during
wintertime in large parts of the world).

Based on the problems detected at low temperatures, the
clearly visible patterns within the SRAM start-up values (see
Fig. 3), and the very small security margin hinted at by the
min-entropy calculations, we advise strongly against using

PIC16F1825 devices to generate a secure seed for PRNG
initialization3.

3.5 Discussion of measurement results
From the measurement results in the two previous sec-

tions it becomes clear that the two investigated device types
behave very differently. The STM32F100R8 devices show
great results when it comes to deriving entropy from the
noise on SRAM start-up patterns, while the PIC16F1825
are clearly unfit for the purpose of extracting a truly ran-
dom seed from this noise. Besides the simple conclusion that
when one wants to implement a PRNG on a microcontroller,
which uses a truly random seed derived from SRAM start-up
noise, one should not use the PIC16F1825 but rather the
STM32F100R8 devices, this section also takes a closer look
at trends that become apparent from the results of these two
devices.

Dependencies on ambient temperature.
Fig. 4 provides a visual representation of the results of

the min-entropy measurements from the STM32F100R8 and
PIC16F1825 chips at different temperatures from Table 1 and
Table 2. In this plot, measurements at the same temperature
are encoded using the same shape for data points.
From Fig. 4 we can derive two clear trends. The first is,

as already concluded before, the fact that the min-entropy
of the STM32F100R8 memories is greater than that of the
PIC16F1825s under any tested circumstance. More interest-
ing is the second trend, which shows that the behavior over
different temperatures for these two devices is very different.
While the min-entropy of the STM32F100R8 is reasonably
stable over temperature, the min-entropy of the PIC16F1825
shows a clear (perhaps even linear) correlation with the tem-
3A less extensive evaluation of PIC16F877A and PIC16F721
devices seems to suggest that other devices in the PIC16F
family have similarly low entropy in their SRAM start-up
patterns.
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perature. In other words: the colder the ambient temperature,
the lower the min-entropy of these start-up patterns.
This behaviour again shows that the PIC16F1825 devices

are very much unsuitable for use in the proposed random
number generator. An uncontrollable variable, such as the
ambient temperature, should never be able to influence the
amount of entropy that will be available in the seed of a
PRNG.

Dependencies on start-up power curve.
During our experiments we have made an attempt to

increase the min-entropy in the start-up patterns of the
PIC16F1825 devices (at room temperature) by making al-
terations to their power circuitry. Since altering circuitry
goes against the principle employed in this paper, i.e. using
unmodified COTS devices, we will not consider these results
in the main story of the paper. More details on this power-up
curve dependency can be found in Appendix A. However,
we would like to point out that altering the shape of the
power-up curve on the supply pins of the PIC16F1825 devices
has resulted in a reduction of the bias in the SRAM start-
up patterns, which increases the entropy of these memories.
This observation shows the considerable possibility that the
biasing in the start-up pattern is caused by internal circuitry
that is in charge of supplying power to the SRAM. It is possi-
ble that (analog) components inside the PIC16F1825 distort
the supply curve before it is able to power-up the SRAM.
Unfortunately Microchip does not provide information about
their silicon implementation, which makes it impossible for
us to verify what is happening inside the devices.

4. SRAM-BASED RNG ARCHITECTURE
SRAM start-up values, as analyzed in the previous sec-

tion, can be used to derive PRNG seeds in an efficient and
lightweight manner on low-cost COTS microcontrollers with-
out the need for extra hardware (along the lines of [19]).

In a nutshell, we measure the start-up contents of SRAM
cells right after power up and post-process them in order to
extract a seed (see Fig. 5):

1. First, the device is powered up. Care should be taken
that the power-up voltage follows a nice curve, as ex-
plained in Appendix A. Furthermore, the device should
be properly discharged before power-up, such that the
SRAM is completely cleared.

2. In the second step, the seed generation algorithm is run:
the code reads the entire SRAM content and applies a
hash function to it to derive the seed, as suggested in
[3, 5, 9]. This step ensures a consistently high entropy
in the seed value. Note that this algorithm must be
the first code that executes on the device in order to
ensure that the SRAM contains uninitialized data.
Care should be taken when implementing the hash func-
tion: first of all, the hash function must be designed
to be lightweight, as the target embedded platform
probably has limited storage and computational power.
Furthermore, any temporary storage used by the hash
function will overwrite parts of the SRAM start-up pat-
terns, which need to be excluded from seed derivation
(in the worst case 8 bits of entropy from the SRAM
start-up pattern are lost for each byte used in the hash
function implementation). Therefore, it is important
to select a hash function that requires a small program
size and has limited memory consumption; Appendix B
discusses suitable implementations of the hash function.

3. Finally, the generated hash is used to seed a PRNG,
which can then be used to obtain a stream of random
numbers. Implementations for PRNGs are extensively
documented in the literature (for example, see [3, 5, 9]).
For use in low-cost devices we suggest to apply a block
cipher in counter (CTR) or output feedback (OFB)
mode, which are known as cryptographically secure
PRNGs. The reason for this choice is that a block ci-
pher implementation is most likely already available in
a device which requires cryptographic algorithms; this
reduces both implementation costs and code size com-
pared to implementing a dedicated PRNG algorithm.
With the appropriate construction, a block cipher can
also be used as a hash function, further decreasing costs
and code size (see Appendix B).

4.1 Security considerations and attacker model
Crucial for security is to maintain the unpredictability of

the data stream produced by the PRNG. Once an attacker
knows the seed, the entire stream becomes predictable. Thus,
care needs to be taken that no other algorithm has access to
the seed value — approaches to achieve this are the subject
of a separate field of embedded cryptography research and
thus outside of the scope of this paper.
In this work we assume an attack scenario in which an

adversary has no direct physical access to the microcontroller.
Otherwise it would be impossible to ensure that the power-up
SRAM value remains secret, since an adversary can use a
debugging interface such as JTAG to halt the microcontroller
during start-up, read out the data and then let the start-up
process continue.
To limit the exposure of the initial SRAM state and prevent

attacks where the seed is re-calculated from SRAM content,
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Figure 5: Secure PRNG seeding based on noise in SRAM start-up pattern.

all SRAM (except for the seed value) should be cleared im-
mediately after seed generation. This can be achieved by
making sure that the seeding algorithm is the very first code
that runs on power-up and that the algorithm is executed
atomically. Methods to ensure this, such as disabling inter-
rupts and preventing unauthorized firmware modifications,
are outside the scope of this paper.
Finally, in order to guarantee proper SRAM resets in be-

tween power-cycles of the microcontroller, care should be
taken that the microcontroller’s positive supply lines are
grounded when the device shuts down. If this is not done, it
might power up with old, predictable data with low entropy
still present in SRAM.

5. CONCLUSION
In this work, the problem of weak seeds used to initialize

PRNGs was addressed. Such weak seeds lead to the PRNG
generating predictable random numbers. We presented a
lightweight software-only approach to generate secure seeds
on commercial off-the-shelf microcontrollers. The source of
entropy used to generate these seeds is the noise present in
SRAM at start-up. In order to support that such an approach
is feasible with COTS microcontrollers, we measured and eval-
uated this noise at various ambient temperatures in two popu-
lar devices, the STMicroelectronics STM32F100R8 (an ARM
Cortex-M3) and the Microchip PIC16F1825. Our analysis
shows that the SRAM start-up patterns of the PIC16F1825
devices contain very little entropy, which are thus unfit for
secure seed generation. Furthermore, we address the pecu-
liarities of these devices under both temperature and sup-
ply voltage variations. The SRAM start-up patterns of the
STM32F100R8 devices on the other hand contain a large
amount of entropy, thereby showing that our approach is
indeed feasible and that unmodified COTS microcontrollers
using a software-only approach can generate secure seeds for
PRNGs.
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APPENDIX
A. DEPENDENCIES OF SRAM ENTROPY

ON START-UP POWER CURVE
In Section 3.4, we have seen that the SRAM start-up pat-

terns of the tested PIC16F1825 devices show severe biasing
at room temperature. Based on the authors’ practical expe-
rience, the most common reason for biased start-up patterns
(besides those due to low temperatures, which were already
shown in the same section) is a due to the suppy voltage
ramp-up curve on the SRAM cells. Measuring the supply
voltage curve applied to the PIC16F1825 by our controller
board shows a ramp as can be seen on the left side of Fig. 6.
Unfortunately, this is a ramp-up curve which is very common
for powering SRAMs and usually results in proper (unbiased)
start-up patterns. However, this does not mean that the
supply voltage curve on the actual SRAMs cannot be the
root-cause. We can only measure the curve on the external

pins of the devices and we do not know what happens inter-
nally with the supply voltage before it reaches the SRAM. It
is possible that there are (analog) components connected to
the power supply, which distort the ramp-up on the SRAM.
Unfortunately Microchip does not provide information about
their silicon implementation, which makes it impossible for
us to verify what is happening inside the devices.
In an attempt to make the start-up pattern of the SRAMs

more random, we have performed experiments with varying
the shape of the supply voltage curve on the supply pins.
One of the shapes that we have tried (and the only one that
improved our results) consists of a short pulse on the supply
pin just before the actual ramp-up curve. An example of
such a shape can be seen on the right side of Fig. 6. In this
shape the height and width of the pulse can be varied.
With the “new” supply voltage curve on the supply pins

of the PIC16F1825s, some devices presented start-up pat-
terns which turned out to be more random than the original
patterns. An example of such a new pattern can be found in
Fig. 7. Unfortunately, we were not able to make the start-
up patterns of all PIC16F1825 devices more random with
this method. Also, the height of the pulse before the voltage
ramp-up curve (which resulted in more random patterns for
some devices) was different for each individual device.

Figure 7: Example start-up pattern of PIC16F1825
(1 KiB SRAM) with altered supply voltage power-up
curve at +25 ◦C. White represents a bit with value
0, black one with value 1.

The experiments described in this appendix are still in a
very preliminary stage and will be part of future work in the
ongoing studies on this topic. What they do show however,
is that the supply voltage curve on an SRAM can have a big
impact on the behaviour of its start-up pattern. Therefore, it
is be very important when implementing a secure PRNG seed
generator as described in this paper to make sure that the
supply voltage curve to the COTS microcontroller allows for
good random noise behaviour in the SRAM start-up pattern.
Furthermore, based on these experiments we can think of at

least one additional attack scenario: a hardware system that
supplies a modified power-up curve to the microcontroller. It
is possible on certain devices, with a specific power-up curve,
to reduce the entropy contents of the SRAM to a minimum.
Such an attack could be imagined on a cellphone, in which
end-users can easily replace the battery, thus we call this the
“evil battery” attack. Possible countermeasures are the use
of power management and power monitoring circuits.
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Figure 6: Original supply voltage curve (left, normal for SRAMs) and altered curve (right).

B. ON THE SELECTION OF A HASH
In this section, we discuss the selection of a hash function

implementation for secure seed generation. We make a sug-
gestion for what is, in our opinion, the best choice, based on
memory and code space efficiencies.
Any examples we give, we only give for the STM32F100R8.

Due to the extremely low entropy in its SRAM start-up values
(0.1% at −30 ◦C), the PIC16F1825 is not usable for secure
PRNG generation using the suggested approach. Due to
entropy being lost to temporary storage of the hash function,
any conceivable hash function implementation will reduced
the available entropy in the PIC16F1825 to 0.
Implementing a hash function would fall outside the scope

of this work. Instead, we base our recommendations on Bal-
asch et al. [2], in which a wide selection of 25 different hash
functions, written in hand-optimized assembly, are presented.
The implementations in [2] are for an 8-bit Atmel AVR chip,
and thus not directly transferable to the chips that we have in-
vestigated. However, the required code sizes can be used as a
relative size indicator. More important than code size though
is the required amount of SRAM for temporary storage, which
luckily is independent of the hardware architecture.
The required amount of SRAM for the hash function in-

fluences the total remaining entropy in the SRAM start-up
pattern. No assumptions are made about the distribution of
entropy within the SRAM, and therefore one has to assume
a worst case scenario in which every byte of storage used by
the hash function removes a full 8 bits of entropy from the
total entropy available in the SRAM start-up pattern.
Assuming a required hash digest size of 256 bit, as required

for FIPS 140-3 [15] compliance, the hash function, of those
presented in [2], that requires the least storage is S-Quark,
with 69 bytes. An alternative is PHOTON-256/32/32, which
requires 82 bytes. If one prefers to use the newest SHA3 algo-
rithm, then Keccak with parameters r = 144, c = 256 is the
choice that requires the least amount of storage (114 bytes).
Instead of using a dedicated hash function, it is also possible
to use a block cipher-based hash construction. In that case,
a Hirose/AES-256 construction is ideal, since it requires only
104 bytes of storage. These requirements, together with the
remaining min-entropy in the STM32F100R8, are listed in
Table 3.
Table 3 clearly shows that the STM32F100R8 microcon-

troller has plenty entropy left over in its SRAM pattern for
any of the chosen hash function implementations. The for-
mula used to calculate the remaining amount of entropy in
SRAM for a given amount of memory usage can be inverted
to calculate the maximum allowed amount of SRAM usage

Table 3: Hash function SRAM requirements and in-
fluence on SRAM entropy in STM32F100R8 (8 KiB
SRAM). SRAM consumption data from [2]. Remain-
ing min-entropy based on a pessimistic min-entropy
estimate of 3% (see Section 3.3).

Hash SRAM Remaining min-
[byte] entropy [bit]

S-Quark 69 1 414
PHOTON-256/32/32 82 1 310
Keccak[r = 144, c = 256] 114 1 054
Hirose/AES-256 104 1 134

when requiring a minimum remaining entropy of 256 bit:

256 ≤ 8 · (8192 · 0.03− x)

⇔ x ≤ 8192 · 0.03− 256
8

⇔ x ≤ 213.76,

(1)

i.e. a hash function implementation on the STM32F100R8
can use a maximum of 213 bytes of SRAM when it is re-
quired that at least 256 bits of entropy remain under worst
case conditions4. Thus, for the STM32F100R8, the choice of
hash will probably not need to depend on the SRAM usage,
since enough entropy is likely available. In this case, the
algorithm characteristics to look at would be either code side
or execution time, depending on the application.
Note that, as mentioned in Section 4, block ciphers in CTR

or OFB mode can be used as PRNGs. Thus, considering the
benefits of code size reduction and a smaller codebase to de-
bug, we recommend the use of a block cipher both for hashing
and as an PRNG. An obvious choice for a block cipher to use
is AES, due to the facts that it is an internationally accepted
standard, has been thoroughly studied and not been found
vulnerable to attacks, and many optimized implementations
exists for a wide range of platforms.

4Worst case conditions assume that every byte of SRAM
used by the hash function reduces the total available entropy
by 8 bits and that there is only 3% entropy in the SRAM
start-up pattern of the STM32F100R8.
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