Logically Reconfigurable PUFs: Memory-Based
Secure Key Storage

llze Eichhorn
Intrinsic-ID
High Tech Campus 9
Eindhoven, The Netherlands
ilze.eichhorn@
intrinsic-id.com

ABSTRACT

The security of hardware is essential to the prevention of
cloning, theft of service and tampering, and therefore to
revenue preservation. An important component of hardware
security is secure key storage. The level of security provided
by a key is dependent upon the effort required from an at-
tacker to compromise the key. Since the sophistication of
tools used to carry out such attacks has increased signifi-
cantly, protection of traditional key storage approaches, like
storing a key in non-volatile memory (NVM), decreases. To
fight these attacks Hardware Intrinsic Security (HIS) can be
used. An example of HIS are Physically Unclonable Func-
tions (PUFs). In this paper we introduce a new logically
reconfigurable PUF (LR-PUF), based on a memory-based
PUF. This LR-PUF uses the physical properties of a PUF
combined with state information that is stored in NVM.
Even though this implementation requires NVM, we will
prove that the LR-PUF provides significantly more secu-
rity than simply storing a key in NVM. The reason for this
is that reading the information in NVM will not allow an
attacker to derive any information on the key.

Categories and Subject Descriptors

B.7.m [Hardware]: Integrated Circuits—Miscellaneous

General Terms
Design, Security

1. INTRODUCTION

PUF's are a promising security primitive that utilize small
physical differences between integrated circuits (ICs). These
differences are due to deep-submicron manufacturing pro-
cess variations. Because of these process variations, every
transistor in an IC has slightly different physical properties
that lead to measurable differences in terms of its electronic
properties, like threshold voltage and gain. Given the fact

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

STC’11, October 17, 2011, Chicago, Illinois, USA.

Copyright 2011 ACM 978-1-4503-1001-7/11/10 ...$10.00.

Patrick Koeberl
Intel Ireland
Collinstown Industrial Park
Leixlip, Ireland
patrickx.koeberl@
intel.com

Vincent van der Leest
Intrinsic-ID
High Tech Campus 9
Eindhoven, The Netherlands
vincent.van.der.leest@
intrinsic-id.com

that these process variations are uncontrollable during man-
ufacturing, the physical properties of a device cannot be
copied or cloned. Based on these properties an electronic
“fingerprint” can be derived for each specific device, which
is easy to measure but almost impossible and economically
not viable to clone.

1.1 Related work

Pappu [13] introduced the concept of PUFs in 2001 us-
ing the name Physical One-Way Functions. The proposed
technology was based on obtaining a response (scattering
pattern) when shining a laser on a bubble-filled transpar-
ent epoxy wafer. In 2002 this principle was translated by
Gassend et al. [3] into Silicon Physical Random Functions.
These functions make use of the manufacturing process vari-
ations in ICs, with identical masks, to uniquely character-
ize each IC based on oscillation frequencies (Ring Oscillator
PUFs). In 2004 Lee et al. [8] proposed another PUF that is
based on delay measurements, the Arbiter PUF.

Besides these PUFs based on delay measurements a sec-
ond hardware intrinsic type is known: the memory-based
PUF. These PUFs are based on the measurement of start-
up values of memory cells. This memory-based PUF type
includes SRAM PUFs (Guajardo et al. [4] in 2007), Butter-
fly PUFs (Kumar et al. [6] in 2008), and D flip-flop PUFs
(Maes et al. [10] in 2008).

Reconfigurable PUFs (R-PUFs) have been introduced by
Kursawe et. al. in [7]. Previous work on PUFs mainly con-
sidered static challenge-response PUFs. However, in many
applications a dynamic PUF would be desirable. The R-
PUF is a PUF with a mechanism that is able to transform
it when required into a new PUF with a new unpredictable
and uncontrollable challenge-response behaviour. However,
a problem with the R-PUF's that are described in [7] is that
none of them seem to be implementable in a practical way
for security purposes. In [5] Katzenbeisser et. al. introduce
the concept of Logically Reconfigurable PUFs (LR-PUFs).
These LR-PUFs are based on a combination of physical
properties of a regular (static) PUF and state information
in NVM. LR-PUFs can be dynamically "reconfigured” by
updating the state information, such that their challenge-
response behaviour changes in a random manner.

1.2 Secure key storage

One of the fundamental uses of PUFs is secure key stor-
age [14, 9]. Using PUFs for this purpose eliminates the need
for storing cryptographic keys somewhere in the device in

non-volatile memory (NVM). When stored in NVM, keys
are always present in the device even when it is switched
off. Therefore, attackers can easily subject those devices to
physical attacks using a variety of tools in order to get access
to the secret keys. Using PUFs, the key is no longer stored
in the device in a digital form. It is only constructed when
it is needed. This limits the possibilities for an attacker im-
mensely, since the time window during which a key is present
is minimal and only occurs when power is on.

The type of PUF's that are generally used for secure key
storage are memory-based PUFs. This subgroup of PUF's is
described in section 1.1. There are two main reasons for us-
ing this subgroup of PUF's for secure key storage. The first
reason is that most memory-based PUFs use components
(like SRAM, Flip-flops) that are present in almost any device
today. Secondly, the measuring circuits for these PUFs are
very simple and can be designed without specific back-end
design constraints. Therefore, costs are limited in compari-
son to PUF's that are based on special delay measuring cir-
cuitry (like arbiter and ring-oscillator PUFs), which require
additional attention during the back-end design process.

When using PUFs for secure key storage, an important re-
quirement is to derive robust cryptographic keys from noisy
measurement data. To be able to do this, a helper data al-
gorithm referred to as a “Fuzzy Extractor” [2] will be used.
Generally, the main functions of a Fuzzy Extractor (FE) are
error correction to remove noise and privacy enhancement
to compress a string into a full entropy key. In the proposed
LR-PUF construction (see section 4), privacy enhancement
is performed by a separate block (the Hash). Therefore, the
FE will only be used for error correction. How the FE is
used in this implementation can be found in section 4.2.

1.3 Our contribution

This paper contains the first ever construction of logi-
cally reconfigurable PUFs (as introduced in [5]) created us-
ing memory-based PUFs. This LR-PUF is specifically suit-
able for hardware/software-binding solutions, which require
the added functionality of protection against tampering with
software versions. The main focus of the paper is to pro-
pose a secure hardware implementation of this LR-PUF. To
achieve this an attacker model is created, architecture and
protocol concepts are proposed, design considerations are
taken into account and resource estimations are made.

1.4 Paper outline

The paper is organised in the following way: section 2
contains the description of the use case, which is driving
the development of the memory-based LR-PUF. An attacker
model for secure key storage with this LR-PUF can be found
in section 3. In section 4 the construction of the LR-PUF
and proposed protocols are described. Extra considerations
for (secure) design are noted in section 5. Section 6 contains
an analysis to demonstrate how secure the implementation
is against the proposed attacker model. After this analysis,
the final conclusions are drawn in section 7.

2. USE CASE

In many of today’s electronic products, embedded soft-
ware plays an important role. Crucial parts are implemented
in hardware, but more and more higher layers (drivers, user
interface, etc.) are implemented in embedded software or

firmware that is running on an internal processor or micro-
controller to keep the design flexible.

An advantage of this is that it is possible to use software
for device differentiation. The functionality of a device can
be changed by updating the software (which can be done
in the field). The opposite is also possible, a client could
change to a subscription with less features (which might be
cheaper). The product differentiation feature can however
be abused by hackers, trying to upgrade devices without
paying by simply copying the software.

Besides using software versions for product differentia-
tion, they can also be used to achieve shorter design cycles
since bugs can easily be repaired in later software upgrades.
Changing software is easier and less costly than making new
hardware. Hackers might try to downgrade software to pre-
vious versions with certain security holes or with previously
available features that can be used to their advantage.

Solutions exist in which software is bound to specific hard-
ware by encrypting software with a unique key permanently
stored in NVM. Only the device that has the correct key
is able to decrypt the software. Copying the software to
a second device will not work since the cryptographic key
is different on the second device. There are however some
problems with these solutions:

1. Cloning: Devices can be cloned if the cryptographic
key can be copied to another system. Therefore the key
must be stored in a relatively expensive secure NVM.

2. Downgrading: Even with a safely stored key, an at-
tacker can downgrade a system if all software versions
of a device are encrypted with the same key.

In order to solve these problems we propose a new type of
logically reconfigurable PUF (LR-PUF). This new type deals
with the two problems listed above in the following way:

1. LR-PUFs can be used to securely store keys on a de-
vice in a cost-effective way. As described in section 1,
using any type of intrinsic PUF makes the key depen-
dent on device unique characteristics. Hence, copying
the LR-PUF circuitry to another device will result in
a different generated key. In this way it is possible to
bind software securely to a specific device by encrypt-
ing software with the device’s unique cryptographic
PUF key, thereby preventing illegal feature upgrading.

2. To prevent downgrading of software, reconfigurability
of the LR-PUF is used. When a new software version is
distributed, the LR-PUF is reconfigured. After recon-
figuration the LR-PUF has a new and unpredictable
response. This results in a renewed cryptographic key.
If the previous software is copied back to the device, it
will not run since the cryptographic key has changed.

Note that it is important that the reconfiguration cannot be
undone. In other words, reconfiguration has to be one-way.

3. ATTACKER MODEL

We first state our assumptions. The details of the LR-
PUF algorithms are not secret. At the LR-PUF level it is
assumed that an attacker cannot write an arbitrary state to
the NVM and is prevented from reading the current state
through any functional interface. The PUF primitive under-
lying the LR-PUF construction is assumed to be physically

uncloneable. A PUF is physically uncloneable if it is practi-
cally infeasible to create a new PUF instance with an identi-
cal challenge-response behaviour to the original. Moreover,
the PUF primitive is assumed to be unpredictable, i.e., it
is not possible to predict the PUF response with more than
negligible probability. For the memory-based PUFs under
consideration it is reasonable to assume that both properties
hold. Note that memory-based PUF's are not mathematically
uncloneable [11]. If the response of a memory-based PUF
can be extracted from the LR-PUF, it will be possible to
emulate its behaviour in software or with a suitable circuit.

At the system-level it is assumed that the LR-PUF is em-
bedded within a System on Chip (SOC). This includes the
security algorithms using the stored secret and the consumer
of data which might, for example, be an embedded CPU.
Furthermore, it is assumed that steps have been taken to
prevent attacks on the LR-PUF and supporting symmetric
cipher by non-invasive means, i.e., by exploiting design flaws,
protocol flaws, inducing faults or monitoring side-channels.

If the system-level assumptions above hold, an attacker
must resort to invasive attack methods. For modern deep-
submicron technology nodes in particular, invasive attacks
require expensive equipment and specialised skill sets plac-
ing such attacks out of the reach of all but well-resourced
attackers. We distinguish between static and dynamic in-
vasive attacks. Static invasive attacks are performed on
powered-off devices. Static attacks may be destructive, for
example exposing the active layer of a device by removal
of all overlying metal interconnects. Dynamic attacks, on
the other hand, are performed on functioning, powered-up
devices and must not compromise the functionality of the
device, at least for the duration of the attack.

In traditional NVM-based key storage applications static
attacks may be successful since the key is present on the de-
vice even when powered off. In contrast, any practical attack
on an LR-PUF based secure key storage must be dynamic,
since the PUF-derived secret is not present in any digital
sense on the powered off device. In effect, the hardware “at-
tack surface” is reduced; static attacks are ruled out with a
consequent increase in the resistance to invasive attacks.

As outlined in section 2 an attacker is likely to attempt
two attack types on the LR-PUF based secure key storage.
The first is a cloning attack which, if successful, allows an at-
tacker to copy the protected asset (here: software) from the
target system to the cloned system. The second is a down-
grading attack where the attacker attempts to revert back
to a previous software version on the same system. These
two attacks will be explored in more detail in section 6.

4. LR-PUF DESIGN

4.1 LR-PUF construction

The principle of the memory-based LR-PUF is equivalent
to the concept presented in [5]. The output of an LR-PUF
is determined by a combination of the physical properties of
a PUF and state information as maintained by central con-
trol logic. The response (output) behaviour of the LR-PUF,
specific for all possible challenges (input), can be changed
by updating this state information (reconfiguration).

Figure 1 shows the construction selected for the memory-
based LR-PUF. The input is translated into a challenge for
the physical PUF. In case of memory-based PUFs this chal-
lenge usually consists of turning the power of the memory off

Reconfigure

NVM
Sty [Hesh };a Output

Challenge Response

Fuzzy
R Extractor

NVM
(Helper
Data)

‘Map input to

Input ‘ Challenge

Figure 1: LR-PUFs: Memory-based construction

and on again, after which the start-up pattern of the memory
can be read. Using a Fuzzy Extractor and helper data, error
correction is performed on the measured noisy response to
retrieve the exact same response as has been enrolled. After
this, the corrected PUF response can be hashed with cur-
rent state information from NVM to produce the LR-PUF
output. To change the output behaviour of the LR-PUF, a
reconfiguration protocol updates the current state to a new
(random) state when required. By writing a new value to
the NVM containing the state, the input of the hash (and
thus the output of the LR-PUF) changes.

More details on the three phases of the system (Enrol-
ment, Reconstruction, and Reconfiguration) can be found in
section 4.2.

4.2 Protocol concepts

The memory-based LF-PUF has to be able to securely
execute three different phases. For these phases, protocol
concepts are developed: Enrolment, Reconstruction, and Re-
configuration. Reconfiguration is a rather new phase, which
was introduced in [5]. We define it for memory-based PUFs.

4.2.1 Enrolment

Enrolment of an LR-PUF is required before a client device
can be used in the field. This is performed in a secure envi-
ronment, initialized by an authorized server. For enrolment
the following parameters are involved:

r: response of PUF of client device

ID: identifier, random number generated by server
w: helper data

So: initial state, randomly generated by server

S1: first state to be used for key generation

K: first generated symmetric key

Now the enrolment protocol, as can be seen in Figure 2,
will be described. First on the server side two random pa-
rameters are generated: an initial state Sp and an identi-
fier ID. Using a function Hash, the first state is derived
from the initial state: Si1 < Hash(Sp). From this first
state and the identifier, the first symmetric key is derived:
K1 + Hash(ID|S1). The server can now encrypt the first
version of the software, SW1, with the generated key K7 and
send Fx1(SW1) to the client, together with Sy and ID.

Using the response r from the PUF on the client device,
the helper data w is generated by the function Gen: w <
Gen(r,ID). On the server side ID, S; and K; are stored.
In the client device Si, w and the encrypted software are

Client Server

Generate: Sq 1D

Sy¢— HashiSq)
Kye—Hash{ID| 54)
5o 1D, By 5%) Ea(5%1)
S16— Hash{5q)
Generata: r
we—3en(rID)
Store: Syw, Egg[SWy) Store; |0, S5y, Ky

Figure 2: Enrolment protocol concept

stored in NVM. Now the client can decrypt this software
using the key K1 which it can retrieve by itself by executing
the reconstruction protocol.

4.2.2 Reconstruction

In order for a client to run a software version SW, that
corresponds to the current state S,, reconstruction of the
key K, is required, using the following parameters:

r’: a noisy PUF response in client device

w: helper data

ID: identifier, random number generated by server
Sz: state to be used for key generation of K

K,: generated symmetric key

By challenging the PUF in the client device, a noisy re-
sponse 7’ is retrieved, related to the original response r
by Hamming distance smaller than a given §. The func-
tion Rest reconstructs the key identifier: ID <« Rest(r’, w).
Then the key can be generated again by the hash function:
K, < Hash(ID|S;). Since only state Sy is present in the
client device, only key K, can be reconstructed and only
software version SW, can be run.

4.2.3 Reconfiguration

In case of a software update, the system can be completely
reconfigured for usage of a new key that only corresponds
to the new software by performing the reconfiguration pro-
tocol, see Figure 3. To upgrade the software from SW; to
SWat1, key K, has to be upgraded to key K,41 which has
to be present on both the client as the server. For this the
following parameters are needed:

r’: a noisy PUF response in client device

w: helper data

ID: identifier, random number generated by server
Sz state to be used for key generation

K,: generated symmetric key

The server initializes reconfiguration by a reconfigure com-
mand encrypted with current key K. The client receives a
command, performs reconstruction using S, to generate K
and decrypts the command. Then the client reconfigures S,
using Hash: Sz41 < Hash(S;). Now reconstruction is per-
formed again, using S;4+1 to generate the new symmetric key
Kyi1: Kgy1 < Hash(ID]|Sz+1). The client sends a response
to the server indicating that reconfiguration was done suc-
cessfully and encrypts this response with K,1. Since the
server should have been able to perform the same recon-
struction and thus have the same key K1, the server is
able to decrypt and check the response.

Cliert Server

Eplrenf Encrypt command: Exfrenf
re PUF(Z) rrenf) P w{renf)

1De— Restir, w)
K&—Hash(lD|5,)
Decrypt comrmand:
Dyed Egd e Yi=ronf

Spe— Hashis,)
Kept—Hash{lD | Su)

S.pe— Hash(s,)
Kept—Hash{lD | S)

Encrypt response:

Exa(renf_ok) Eg(ronf ok)
Check response:
Dyt et (renf_ak))=rnef _ok?
Yes
Etert [S¥Woent) Encrypt new software! Epe(5We)

Store! B[S)

Figure 3: Reconfiguration protocol concept

If the server has validated the response it encrypts the
new software SWy41 with the new key K41 so it can be
sent to and run by the client device. If the response is not
valid, appropriate measures have to be taken.

5. DESIGN CONSIDERATIONS

5.1 Constraints for secure implementation

With respect to the design of the Enrolment protocol, the
reason for using a hash function to write the state value into
the NVM is that with this construction there is no direct
write (or read) path to the memory. This way it will be
impossible for an attacker to abuse this channel for writing
a chosen value to the state memory to perform some form of
illegal reconfiguration. Since the hash function is assumed
to be irreversible it is impossible to know which value should
be written at the input to get a specific value in the memory.

Note that when using the same hash function for both
enrolment (through the external interface) and reconfigura-
tion (input from NVM), it is preferred to change its usage
in such a way that an input S; entered at the external in-
terface results in a different output than when taken from
NVM. This is to prevent an attacker being able to input an
already known (previously used) S, into the hash function
of the system to get value S;41 back into the memory. This
statement holds for all values of = larger than 0, while it is
assumed that Sp is only known to the server and is secure.

The described hash function is required to prevent an at-
tacker from writing a previous state into the NVM. Besides
changing this state, it may still be possible for an attacker to
perform an illegal re-enrolment: an attacker could be able to
set a new value for ID. To prevent an illegal re-enrolment,
two possible methods are described that can be implemented
in combination with the previously described hash.

The first method is to prevent enrolment physically by dis-
abling the control and data paths associated with enrolment.
In practice this means disabling the relevant state transition
logic in the control unit and disabling the full width of the
external NVM write data path. Anti-fuse technologies based
on gate-oxide rupture are available in standard ASIC design
flows and are suitable for this type of application.

If using fuses is not an option, it is also possible to prevent
illegal re-enrolment using additional security in the proposed
protocols. This way re-enrolment by an unauthorized entity
can be prevented, while it is still possible for an authorized
entity to re-enrol. This is in contrast to using fuses, when

any form of re-enrolment becomes impossible. To demon-
strate this method, we assume three possible attacks that
can be performed. First, an attacker wants the device to
execute a previous enrolment command. This replay-attack
can be prevented by the inclusion of a parameter correspond-
ing to the current state in the enrolment command (e.g. en-
cryption with the current key). Preventing an attacker from
executing his own enrolment command, authentication can
be performed before enrolling (e.g. signing procedure with
public/private keys). The final example is an attacker want-
ing to run a corrupted command. This can be prevented by
an integrity check over the data of the command.

Note that methods from this section are suggestions by the
authors, other methods might also work. Details of solutions
will depend on the specific implementation of an LR-PUF.

5.2 Implementation cost estimate

To estimate the amount of resources required for imple-
menting the memory-based LR-PUF, an architecture design
is required as an example. We will use the design from fig-
ure 4 for our estimate. The figure omits the control logic for
clarity. The design contains the following components:

- Fuzzy Extractor. As an example, an error correction
code construction from [1] has been used. This code is a
concatenation of a repetition [11,1,11] with a Golay [24,12,8]
code (used to to reconstruct an ID of 171 bits).

- 0.5kB of SRAM memory, since the Fuzzy extractor
requires 495 bytes of SRAM as its input.

- 0.5kB of public NVM to store helper data. This size
needs to be equal to the SRAM. NVM is assumed be Flash
or EEPROM external to the SOC embedding the LR-PUF.

- 256 bits programmable private NVM for storing
the state. NVM technologies which can be implemented in
standard CMOS processes have been proposed since at least
the early 1990s [12], although it is only relatively recently
that they have become widely available in standard IC de-
sign flows. These technologies, generically known as “logic
NVM”, are a good fit for the state storage requirement.

- Hashing functionality consists of SHA-256 algorithm.

- Encryption/Decryption uses AES-128 in CBC-mode.

- Control logic (memory controllers, muxing, I/0O, etc.).

- One-time programmable fuses are used to disable
data and control paths related to enrolment. Anti-fuse tech-
nologies based on gate-oxide rupture are available in stan-
dard IC design flows at sizes ranging from 16 fuses upwards.

NVM
(public,
helper data)

Enrolment_|
Data

Figure 4: Example of LR-PUF architecture

For each of these components an area estimation in GE !
has been made for implementation in 65nm technology. These
estimations can be found in Table 1.

!GE - Gate Equivalent is a measure of area in any technol-
ogy. 1 GE is the area of a NAND2 (standard drive strength).

Table 1: Area estimate for implementation in 65nm

Component Estimate | Comments
SRAM and
control logic 10k GE | Includes LR-PUF control
Public NVM - External Flash/EEPROM
Private NVM | 128 GE? | 256-bit 2T MTP NVM
FE 4k GE Repetition and Golay
Hashing 20k GE
En-/Decrypt. | 10k GE | 128 bits key length
Fuses 32 GE 64 2T OTP anti-fuses

| Total | 44.2k GE | |

Naturally, the total resource cost of the memory-based
LR-PUF is higher than the cost of storing a key in NVM or
using a regular PUF (which can both be done with a sub-
set of the components from the list above). However, it is
clear that neither of these two solutions suffice for the use
case that has been stated in this document. Storing a key
in NVM is susceptible to both cloning and downgrading (as
defined in section 2). Therefore, this method of key stor-
age is not at all comparable to the LR-PUF. Comparing the
LR-PUF with a regular PUF implementation (which is still
vulnerable to downgrading) shows that the only component
that is required for the LR-PUF and not for a regular PUF
is the private NVM. Hashing and en-/decryption function-
ality may be optional in some PUF implementations, but
are usually required for secure key storage implementations.
Based on this comparison we conclude that the additional
protection against downgrading attacks, as provided by the
LR-PUF, comes at only little additional resource cost.

6. SECURITY ANALYSIS

In this section we informally analyse the secure key storage
solution developed in previous sections in the context of the
attacker model from section 3.

6.1 Cloning attack

The first type of attack we consider are cloning attacks.
As described in Section 2, a typical cloning attack involves
extracting the cryptographic secret from the target device
and copying it to the clone. For LR-PUF-based secure key
storage a cloning attack of this type would require the LR-
PUF state and PUF response to be replicated in the cloned
system. The properties of the underlying PUF primitive are
sufficient to prevent such simple copying attacks since the
PUF is physically unclonable.

More sophisticated cloning attacks can be envisaged which
exploit the mathematical cloneability of memory-based PUFs.
If the PUF response r can be successfully extracted, then
a cloned device might embed a circuit modelling the PUF
behaviour, something that is distinct from attempting to
physically clone the PUF. A variant of this attack might at-
tempt to extract and replicate the PUF-derived secret 1D
rather than r. It is assumed in both cases that the attacker
has knowledge of the current state S, perhaps also through
invasive attack methods.

For any modern deep-submicron technology the barriers
to a successful execution of the above attack are consider-
able. The attacker would need access to high-end probing

2 Area estimate omits NVM chargepump.

technologies for extracting r, be capable of reverse engineer-
ing the SOC embedding the LR-PUF and finally fabricating
the functionally equivalent clone. The associated costs are
significant with no guarantee of success.

6.2 Downgrading Attack

The second considered attack type is an LR-PUF state
modification attack where the attacker attempts to repli-
cate a previous state by writing it to the NVM. We assume
that the attacker has knowledge of a previous valid state.
Writing arbitrary data to the NVM is prevented due to the
presence of a hash function in the NVM write path. How-
ever, this mechanism does not prevent an attacker from at-
tempting to write a previously known state S, in order to
write Sz41 to the NVM. As described in Section 5 such an
attack is prevented at hardware level by disabling the ex-
ternal NVM write path after enrolment, or by using differ-
ent cryptographic hashes for enrolment and reconfiguration.
An attacker must therefore resort to invasive methods. For
NVM technologies based on a floating-gate charge storage
mechanism, an invasive attacker’s options for writing an ar-
bitrary state would be to manipulate the NVM cell array
directly or manipulate the NVM write path. The technical
challenges and cost of such attacks are considerable, partic-
ularly when compared to the outcome - a downgrade attack
on a single device instance. It is likely that the attack cost
is significantly greater than the potential benefit to the at-
tacker, and can be ruled out.

7. CONCLUSIONS

In this paper we have presented a new type of LR-PUF,
which bases its security on a combination of the physical
properties of a memory-based PUF and state information
stored in NVM. This LR-PUF is specifically suitable for se-
cure key storage in a system that requires the key to be
updated. The new construction is shown to be more secure
than storing a key in NVM. Furthermore, the fact that the
stored key can be updated in the LR-PUF is an additional
feature in comparison to a regular PUF. A comparison of the
resource costs for an LR-PUF and a regular PUF has shown
that the new functionality comes at only little additional re-
source costs. Finally, a security analysis has shown that it
is economically not viable to perform an attack on this LR-
PUF, when the design is according to the requirements for
secure design from this paper. The authors conclude that
this paper introduces a new type of LR-PUF that allows a
hardware intrinsic key to be stored and updated in a secure
and resource efficient manner.

Acknowledgement

The authors thank Erik van der Sluis and Peter Simons for
their help with hardware implementation and all involved
partners of the UNIQUE project for their feedback and dis-
cussions. This work has been supported by the European
Commission through the FP7 programme UNIQUE.

8. REFERENCES
[1] C. Bosch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi,
and P. Tuyls. Efficient helper data key extractor on
fpgas. In Proceedings of CHES, pages 181-197, 2008.
[2] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith.
Fuzzy extractors: How to generate strong keys from

3]

[4]

[5]

[6]

[7]

8]

(10]

(11]

(12]

(13]

(14]

biometrics and other noisy data. SIAM J. Comput.,
38:97-139, March 2008.

B. Gassend, D. Clarke, M. van Dijk, and S. Devadas.
Silicon physical random functions. In Proceedings of
the 9th ACM conference CCS’02, pages 148-160, New
York, NY, USA, 2002. ACM.

J. Guajardo, S. S. Kumar, G.-J. Schrijen, and

P. Tuyls. Fpga intrinsic pufs and their use for ip
protection. In Proceedings of the 9th international
workshop on Cryptographic Hardware and Embedded
Systems, CHES ’07, pages 63-80, Berlin, Heidelberg,
2007. Springer-Verlag.

S. Katzenbeisser, U. Kocabas, V. van der Leest,

A. Sadeghi, G. Schrijen, H. Schréder, and

C. Wachsmann. Recyclable pufs: Logically
reconfigurable pufs. In Proceedings of CHES, to
appear, 2011.

S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and
P. Tuyls. Extended abstract: The butterfly puf
protecting ip on every fpga. In Proceedings of HOST
2008, pages 67 =70, june 2008.

K. Kursawe, A.-R. Sadeghi, D. Schellekens, B. Skoric,
and P. Tuyls. Reconfigurable physical unclonable
functions - enabling technology for tamper-resistant
storage. In Proceedings of HOST 2009, pages 22—29,
Washington, DC, USA, 2009. IEEE Computer Society.
J. Lee, D. Lim, B. Gassend, G. Suh, M. van Dijk, and
S. Devadas. A technique to build a secret key in
integrated circuits for identification and
authentication applications. In VLSI Circuits, 2004.
Digest of Technical Papers. 2004 Symposium on, pages
176 — 179, june 2004.

D. Lim, J. Lee, B. Gassend, G. Suh, M. van Dijk, and
S. Devadas. Extracting secret keys from integrated
circuits. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 13(10):1200 —1205, oct.
2005.

R. Maes, P. Tuyls, and I. Verbauwhede. Intrinsic pufs
from flip-flops on reconfigurable devices. In Workshop
on Information and System Security (WISSec 2008),
page 17, Eindhoven,NL, 2008.

R. Maes and I. Verbauwhede. Physically unclonable
functions: A study on the state of the art and future
research directions. In D. Basin, U. Maurer, A.-R.
Sadeghi, and D. Naccache, editors, Towards
Hardware-Intrinsic Security, Information Security and
Cryptography, pages 3-37. Springer Berlin Heidelberg,
2010.

K. Ohsaki, N. Asamoto, and S. Takagaki. A single
poly eeprom cell structure for use in standard cmos
processes. Solid-State Circuits, IEEE Journal of,
29(3):311 —-316, Mar. 1994.

P. S. Ravikanth. Physical one-way functions. PhD
thesis, 2001. AAI0803255.

B. Skoric, P. Tuyls, and W. Ophey. Robust key
extraction from physical uncloneable functions. In

J. Toannidis, A. Keromytis, and M. Yung, editors,
Applied Cryptography and Network Security, volume
3531 of Lecture Notes in Computer Science, pages
99-135. Springer Berlin / Heidelberg, 2005.

