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Abstract — As billions of devices connect to the Internet, 

security and trust become crucial. This paper proposes a new 

approach to provisioning a root of trust for every device, based 

on Physical Unclonable Functions (PUFs). PUFs rely on the 

unique differences of each silicon component introduced by 

minute and uncontrollable variations in the manufacturing 

process. These variations are virtually impossible to replicate. As 

such they provide an effective way to uniquely identify each 

device and to extract cryptographic keys used for strong device 

authentication. This paper describes cutting-edge real-world 

applications of SRAM PUF technology applied to a hardware 

security subsystem, as a mechanism to secure software on a 

microcontroller and as a basis for authenticating IoT devices to 

the cloud. 
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I.  INTRODUCTION  

The Internet of Things already connects billions of devices 
and this number is expected to grow into the tens of millions in 
the coming years [5]. To build a trustworthy Internet of Things, 
it is essential for these devices to have a secure and reliable 
method to connect to services in the cloud and to each other. A 
trustworthy authentication mechanism based on device-unique 
secret keys is needed such that devices can be uniquely 
identified and such that the source and authenticity of 
exchanged data can be verified.  

In a world of billions of interconnected devices, trust 
implies more than sound cryptography and resilient 
transmission protocols: it extends to the device itself, including 
its hardware and software. The main electronic components 
within a device must have a well-protected security boundary 
where cryptographic algorithms can be executed in a secure 
manner, protected from physical tampering, network attacks or 
malicious application code [18]. In addition, the cryptographic 
keys at the basis of the security subsystem must be securely 
stored and accessible only by the security subsystem itself. The 
actual hardware and software of the security subsystem must 
be trusted and free of known vulnerabilities. This can be 
achieved by reducing the size of the code to minimize the 
statistical probability of errors, by properly testing and 
verifying its functionality, by making it unmodifiable for 
regular users and applications (e.g. part of secure boot or in 
ROM) but updateable upon proper authentication (to mitigate 

eventual vulnerabilities before they are exploited on a large 
scale). Ideally, an attestation mechanism is integrated with the 
authentication mechanism to assure code integrity at the 
moment of connecting to a cloud service [3]. 

However, we are not there yet. We also need to be able to 
trust the actual generation and provisioning of the 
cryptographic keys into the security subsystem. Without trust 
in the key generation and injection process we cannot assure 
that keys are sufficiently random and that every device in fact 
obtains a unique key, which is the basic assumption for secure 
device identification. In addition, the provisioning must 
guarantee that private keys are not known outside the device, 
cannot be extracted or cloned, and that public keys are 
unmodifiable without proper authentication.  

A trustworthy Internet of Things requires a trust continuum 
from chip manufacturing through code development, device 
manufacturing, software and key provisioning, all the way to 
connecting to the actual cloud service. Central to the capability 
of a device to authenticate to the cloud is its digital identity, 
which is protected by the security subsystem. Devices that 
make up the Internet of Things use a broad variety of silicon 
components. It will therefore be a daunting challenge to roll out 
a universal security solution that works seamlessly for all 
possible microchip technologies in a consistent cost-effective 
way.  

The further outline of this paper is as follows. Section II 
articulates the importance of device root keys as a basis for a 
digital device identity and authentication. Section III introduces 
SRAM-based PUF as an innovative, flexible and cost-effective 
way to bootstrap and secure such root keys in a universal way 
on the widest possible variety of microchip technologies. 
Finally, section IV highlights some relevant real-world 
applications. 

II. DEVICE IDENTITY AND AUTHENTICATION 

To securely authenticate a device that is connecting to a 
cloud service or for unmanned machine-to-machine 
connectivity, every single device must provide a strong 
cryptographic identity. Such identity typically consists of an 
asymmetric key pair, composed of a public key and a private 
key. The private key must be kept secret in the device and 
ideally should never leave the device security boundary. The 
public key on the other hand can be output and communicated 



to external entities. According to the current PKI model, before 
the key pair can be used for device authentication a trusted 
entity needs to assert that the public key in fact belongs to a 
specific device (e.g. specific brand, model, serial number). This 
assertion is created in the form of a digital certificate. The 
trusted entity is typically the OEM that manufactures the 
device, although many variations in the supply chain setup are 
possible.  

Devices are authenticated by sending their digital 
certificate, which includes the public key, to the verifying 
entity, e.g. the cloud service or another device. The verifying 
party checks the contents of the certificate and verifies by the 
known public key that it is correctly signed by a party it trusts. 
The device’s public key that is in the certificate can then be 
used to verify the authenticity of the device by means of 
established authentication protocols. For example, a challenge-
response protocol can be used in which the verifying party 
generates a random number and sends it to the device. The 
device generates a response value using its private key to 
compute a digital signature on the received challenge. The 
verifying party receives the response and verifies that the 
signature is correct using the device’s public key. Alternative 
authentication schemes based on asymmetric keys are possible. 
For example, when the device sets up a secure HTTP 
connection to the cloud service using the TLS protocol, the 
client authentication check is done as part of the TLS 
handshake. This use case is described in section IV.C. 

The asymmetric key pair that forms the device identity 
needs to be securely stored inside the security subsystem. This 
can be achieved via key wrapping, a process that involves 
encrypting the private key within the security boundary before 
storing it in non-volatile memory (NVM). The root key, used to 
encrypt the other secrets, must be device-unique and securely 
stored inside the security boundary: see the use case in section 
IV.A. Besides encrypting additional secrets for permanent 
storage, the root key can also be used to derive additional 
private/public key pairs directly via a cryptographic key 
derivation mechanism. Such keys can be used to authenticate 
and establish secure channels with multiple devices.  

Provisioning root keys into a chip is an essential step in 
establishing a root of trust anchored in hardware. Traditional 
key storage methods require the root keys to be injected at an 
early stage in the production chain. This process implies that 
secret keys are handed over from device manufacturer to 
silicon manufacturer, and hence are revealed to different parties 
in the production chain. This creates undesired liabilities for 
both parties as the root keys are known outside the device’s 
security boundary. In the IoT this problem is enormously 
amplified by the sheer number of devices. In this emerging 
scenario, distribution and potential leakage of root keys 
becomes the single most important problem [9]. 

To overcome these limitations, a flexible new key 
provisioning method is needed that enables secure 
programming of device root keys at any stage in the production 
process, allowing a device maker to reduce its dependency on 
other trusted parties. Physical Unclonable Functions (PUFs) 
based on SRAM memory are an ideal candidate for providing a 

universal cost-effective solution to this root key programming 
and storage problem. 

III. PHYSICAL UNCLONABLE FUNCTIONS 

Physical Unclonable Functions (PUFs) are known as 
electronic design components that derive device-unique silicon 
properties, or silicon fingerprints, from integrated circuits 
(ICs). The tiny and uncontrollable variations in feature 
dimensions and doping concentrations lead to a unique 
threshold voltage for each transistor on a chip. Since even the 
manufacturer cannot control these exact variations for a 
specific device, the physical properties are de facto unclonable. 
These minute variations do not influence the intended 
operation of the integrated circuit. However, they can be 
detected with specific on-chip circuitry to form a device-unique 
silicon fingerprint. The implementation of such measurement 
circuit is what is called a PUF circuit. There are several 
alternatives to implementing PUF circuits into an IC. They 
vary from comparing path delays and frequencies of free 
running oscillators to measuring startup data from memory 
components [10]. A particularly promising PUF technology is 
based on SRAM memory. The SRAM PUF has excellent 
stability over time, temperature and supply voltage variations 
and it provides the highest amounts of entropy. Furthermore, it 
is available as a standard component in almost every IC. The 
latter aspect has important advantages in terms of deployment, 
testability and time to market. SRAM PUFs can be used in 
standard chips by software access to uninitialized SRAM 
memory at an early stage of the boot process. Hence, it is not 
required to integrate special PUF circuitry into the hardware of 
the chip when using SRAM PUF technology.  

A. SRAM PUF 

SRAM PUFs are based on the power-up values of SRAM 
cells. Every SRAM cell consists of two cross-coupled 
inverters. In a typical SRAM cell design, the inverters are 
designed to be nominally identical. However, due to the minute 
process variations during manufacturing, the electrical 
properties of the cross-coupled inverters will be slightly out of 
balance. In particular, the threshold voltages of the transistors 
in the inverters will show some random variation. This minor 
mismatch gives each SRAM cell an inclination to power-up 
with either a logical 0 or a logical 1 on its output, which is 
determined by the stronger of the two inverters. Since this 
variation is random, on average 50% of the SRAM cells have 0 
as their preferred startup state and 50% have 1. Note that 
SRAM memory is normally used by writing data values into 
the memory and reading back the written values at a later point 
in time. To use SRAM as a PUF, one simply reads out the 
memory contents of the SRAM before any data has been 
written into it. 

One can evaluate the behavior of this SRAM PUF based on 
two main properties for PUFs: reliability and uniqueness. Over 
the past years thorough analysis of SRAM PUF data has been 
performed. Startup patterns have been measured under various 
conditions, from SRAM implemented in several technology 
nodes (180nm down to 14nm) by several foundries with 
different processes. 
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Fig. 1:  A 6-transistor SRAM cell; two cross-coupled inverters are formed by 

left inverter consisting of PMOS transistor PL and NMOS transistor NL and 

right inverter consisting of PMOS transistor PR and NMOS transistor NR. 

Left and right access transistors are indicated as AXL and AXR respectively. 

Extensive tests performed by leading PUF vendors and 
universities (e.g. in [10],[17]) have yielded the following 
results: 

• Reliability: Most of the bit cells in an SRAM array have a 
strongly preferred startup value which remains static over 
time and under varying operational conditions. A minority 
of cells consist of inverters that are coincidentally well 
balanced and result in bit cells that will sometimes start up 
as a 0 and sometimes as a 1. This causes limited “noise” 
(or, deviation from the initial reference measurement) in 
consecutive SRAM startup measurements. Tests 
demonstrate that the noise level of the SRAM PUF under 
extensive environmental conditions (e.g. temperatures 
ranging from -55˚C to 125˚C) and over years of lifetime 
(see also [12]) is sufficiently low to extract cryptographic 
keys with overwhelming reliability when using appropriate 
post-processing techniques. 

• Uniqueness: Extensive testing demonstrates that the startup 
pattern of an SRAM array is unique for every IC and even 
for a specific memory (region) within every IC. It is highly 
unpredictable from chip to chip and hence provides a large 
amount of entropy. The amount of entropy is sufficiently 
high to efficiently generate secure and unique cryptographic 
keys suitable to a broad range of applications. 

B. Root Key Storage with PUFs 

PUFs can be used to reconstruct a device-unique 

cryptographic root key on the fly, without storing secret data 

in non-volatile memory. Since PUF responses are noisy, they 

cannot be used directly as a cryptographic key. To remove the 

noise and to extract sufficient entropy, a so-called Fuzzy 

Extractor is needed. A Fuzzy Extractor or Helperdata 

Algorithm is a cryptographic primitive that turns PUF 

response data into a reliable cryptographic root key.  

 
The Fuzzy Extractor (see Fig. 2) has two modes of 

operation: Enrollment and Key Reconstruction. 

In Enrollment mode, which is typically executed once over 
the lifetime of the chip, the Fuzzy Extractor reads out an 
SRAM PUF response and computes that so-called Helperdata 
that is then stored in (non-volatile) memory accessible to the 
chip [11]. 

Whenever the cryptographic root key is needed by the chip, 
the Fuzzy Extractor is used in the Key Reconstruction mode. In 
this mode a new SRAM PUF response is read out and 
Helperdata is applied to correct the noise. A hash function is 
subsequently applied to reconstruct the cryptographic root key. 
In this way the same key can be reconstructed under varying 
external conditions such as temperature and supply voltage.  

Important: by design the Helperdata does not contain any 
information on the cryptographic key itself and it can therefore 
be safely stored in any kind of unprotected Non-Volatile 
Memory (NVM) on- or off-chip. At rest, when the device is 
powered down, no secret is ever present in memory making 
traditional expensive anti-tamper requirements obsolete. 

 

 

 

Fig. 2:  A Fuzzy Extractor operates in two basic modes: i) In Enrollment mode 

(steps 1-2) Helperdata is generated based on a measured SRAM PUF 
response, ii) In the Key Reconstruction mode (steps 3-5) the Helperdata is 

combined with a fresh SRAM PUF response for reconstructing the device-

unique cryptographic root key 

  

C. Fuzzy Extractor implementations 

A Fuzzy Extractor is typically implemented inside a chip in 
one of the following basic forms: 

• Hardware IP: A hardware IP module that is connected to a 
dedicated SRAM memory. The Fuzzy Extractor hardware 
IP block directly controls the SRAM memory interface to 
read out the PUF values. The cryptographic key can be 
output via a dedicated interface to a cryptographic 
accelerator. The security advantages of such an 
implementation are discussed in the next subsection. 
Besides security advantages, a Fuzzy Extractor 
implemented in hardware is typically faster and more 
power efficient than the equivalent software 
implementation.  

• Software IP: A software library that can access a dedicated 
portion of the overall SRAM memory. It is preferable that 
the SRAM portion used by the PUF algorithm is not shared 
with other software. Memory management units, silicon 
firewalls and trusted execution environments (TEEs) are 



likely used if available. The Fuzzy Extractor does not 
contain any secrets, so it does not need to be encrypted. 
However, it is important to guarantee the integrity of the 
software itself. This can be achieved with a secure boot 
setup or by locking down the software on the chip with 
alternative mechanisms provided by the chip itself. 
Advantages of the software variant include flexible 
deployment options, i.e. retrofitting existing devices in the 
field and integration with other security components, with 
minimal or no hardware changes. 

D. Security level provided by PUFs 

Using the PUF to reconstruct a cryptographic root key has the 

following security advantages: 

• Keys are reconstructed on the fly when needed and are 

present only temporarily within the security boundary of 

the chip. This greatly reduces the attack surface and time 

window for exploiting eventual vulnerabilities. 

• When the chip is powered down, no physical traces of the 

key are present in the chip. 

• Guaranteed randomness from the physics of the silicon 

results in full entropy keys. 

• Root keys are generated within the security boundary of 

the chip rather than being injected from the outside, 

resulting in a safer and more flexible provisioning process 

throughout the supply chain. 

 

It is important to observe that the Fuzzy Extractor must be 

implemented and integrated in a secure manner to minimize 

the exposure to various attack vectors including software 

vulnerabilities, side-channel and invasive attacks. Various 

countermeasures are possible and this is an area where 

established PUF vendors have developed considerable 

proprietary IP.  

 

The actual security level achieved depends largely on the 

integration of the Fuzzy Extractor with the security subsystem. 

One of the design goals is to make sure that only the Fuzzy 

Extractor can access the SRAM PUF. In case of a hardware 

integration this is assured by connecting a dedicated SRAM 

memory directly to the Fuzzy Extractor and making sure that 

there are no software interfaces to it. To this end, it is for 

example preferable to use a Built-In Self Test instead of a scan 

chain [2]. In case of a software implementation one needs to 

make sure that access control settings of the chip are set up 

correctly. For example, this is done by using a memory 

management unit to reserve access to the SRAM PUF region 

of the memory dedicated to the Fuzzy Extractor software, by 

locking down the software image using firmware lock bits, by 

applying secure boot or by integrating into a TEE. 

Additionally, the in-circuit debug facilities need to be 

disabled. 

 
Another design goal is to make sure that the cryptographic 

key that is output by the Fuzzy Extractor is transported 
securely to the cryptographic software that requires it. In case 
of a hardware implementation, this can be arranged by 
connecting the output bus of the Fuzzy Extractor hardware via 

a direct internal connection to a cryptographic coprocessor. In 
case of a software implementation, one needs to make sure that 
any registers used to store the key are cleared as soon as 
possible and cannot be accessed by untrusted processes. 
Similar measures as described in the previous paragraph can be 
taken to lock down the security boundary of the chip. 

E. Known attacks to PUFs 

Delay-based PUFs such as Arbiter PUFs and Ring-Oscillator 

PUFs promise a large space of independent challenge-

response pairs that can be used for special authentication 

schemes [6][7]. In practice, however, it turns out that 

implementations of such PUFs are broken by modelling 

attacks, showing that responses are predictable given a limited 

subset of challenge-response pairs [15][16].  

 
Memory-based PUFs such as the SRAM PUF are not 

susceptible to such attacks. The attacks that have been 
demonstrated on SRAM PUFs have been conducted only in 
non-realistic laboratory setups and do not form a threat to 
practical implementations. For example, with highly 
specialized equipment such as laser scanners it seems possible 
to read out SRAM memory contents by observing photo 
emissions during repeated read cycles [14]. This method is, 
however, feasible only in antiquated large technology nodes 
(e.g. 300 nm) and does not scale down to smaller modern 
technology nodes. In addition, the documented attacks require 
a situation where many consecutive SRAM read operations are 
executed sequentially on the same SRAM address range; a 
situation that does not occur in a good Fuzzy Extractor 
implementation. The work presented in [8] uses such a readout 
method in combination with a Focused Ion Beam to “clone” a 
PUF response from a first to a second SRAM memory. It 
should be noted that this is feasible only in obsolete large 
technology nodes (demonstrated on 600nm technology) and 
that it is only practical to clone a very limited number of bits 
with significant effort. In addition, commercial 
implementations include various proprietary countermeasures 
that make these kinds of attack simply infeasible. As of today 
there are no documented successful attacks of commercial-
grade SRAM PUF implementations. 

IV. USE CASES 

This section offers some real-world examples of successful 

SRAM PUF applications. 

A. Secure key vault 

The SRAM PUF can be used to provide a cryptographic 
root key for a hardware security subsystem. The Fuzzy 
Extractor IP block is integrated with the security system IP. 
The chip-unique cryptographic root key that is reconstructed 
from the SRAM PUF feeds directly into the cryptographic 
module, for example an AES core. Fig. 3 shows a typical 
security subsystem architecture. 

To initialize the system, the PUF must be enrolled: a first 
readout of the SRAM startup values is used by the Fuzzy 
Extractor to compute the Helperdata (steps 0 and 1 in Fig. 3). 
Once the Helperdata is stored in the chip’s non-volatile 
memory (NVM), the enrollment step is completed. 
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Fig. 3:  Secure key vault based on SRAM PUF depicting Enrollment steps 0 

and 1 (dotted lines); Key reconstruction steps 2,3,4, and Encryption of data 

generated on processor in steps 5 and 6. 

      The enrollment step establishes the device-unique 

cryptographic root key in the security subsystem. To 

reconstruct this key for use, the Helperdata is read from NVM 

and combined with a readout of the SRAM startup values in 

the Fuzzy Extractor (steps 2 and 3). The reconstructed key is 

fed into the AES core (step 4). Data that is being processed by 

the CPU can be securely stored by feeding it to the security 

subsystem, where it is encrypted using the AES module and 

stored in NVM (steps 5 and 6). Note that besides just 

encrypting the data, the AES core can also be used to protect 

the integrity of the data by computing additional 

authentication tags or by using an authenticated encryption 

mode such as AES-GCM. 

 

      When the processor requires the secure data, steps 2, 3 and 

4 are repeated to reconstruct the cryptographic root key and 

load it into the AES core. Steps 6 and 5 are then reversed in 

direction to feed the encrypted data to the AES block, have the 

AES block decrypt it and feed it back to the CPU. 

 
      This mechanism makes it possible to keep secrets in 
otherwise unprotected non-volatile memory. Note that only 
encrypted data and non-sensitive Helperdata is ever stored in 
NVM. No secret is ever stored in permanent memory. The 
cryptographic root key that is reconstructed from the SRAM 
PUF is not known anywhere outside the security boundary. 
Therefore, the data that is securely stored in the chip’s NVM 
can be decrypted only on the same chip on which it has been 
generated. Transferring them to any other target device is not a 
concern, even if the Helperdata is copied along with them. The 
Helperdata can be used only with the specific SRAM 
fingerprint of the chip that generated it in the first place.          

 

B. Software protection in microcontroller  

This section describes a use case where the SRAM PUF is 
used to protect software IP on a microcontroller. We assume 
the microcontroller has an internal flash memory where its 
program code can be stored. Before code is executed it is 
loaded into an internal SRAM memory. A small part of the 
SRAM memory is reserved to be used as PUF. This can be 
achieved by instructing the compiler to exclude a certain part 
of the SRAM from the memory map, assuring that it will not 
be “visible” by other software.  

We furthermore assume that the microcontroller has some 
access control mechanisms to: 

1. Lock down the software in the flash memory to prevent any 
modification 

2. Disable in-circuit debug facility 

Except for a few low-end microcontrollers, these access 
control mechanisms are quite common. 

1) Setup phase 
To securely set up the system, we use a provisioning PC in 

a trusted environment to load the code in the flash memory of 
the microcontroller. This is depicted in step 1 of Fig. 4. This is 
software that will be executed at runtime (see next section). 
The software consists of: 

• A boot image containing the Fuzzy Extractor algorithm and 
the cryptographic cipher algorithms used to decrypt the 
software image 

• A software image encrypted with key S. Initially the 
software has an empty header. At the end of the setup phase 
the header will be overwritten with a uniquely encrypted 
header per device. 

      After storing the software code in flash memory, the 

provisioning PC loads a temporary enrollment image in the 

executable SRAM of the device. This is depicted in step 2. 

The enrollment image contains the Fuzzy Extractor algorithm, 

as well as a cryptographic cipher that can be used to encrypt a 

header for the software image in flash. Furthermore, it 

contains the software image encryption key S.  

 

      When execution of the enrollment image is triggered (step 

3), the SRAM PUF is read out (step 4) and Helperdata is 

created by the Fuzzy Extractor algorithm. The Helperdata is 

stored in the flash memory (step 5). Based on the Helperdata 

and the SRAM PUF readout, the cryptographic root key of the 

device K is reconstructed by the Fuzzy Extractor. Using the 

cryptographic cipher in the enrollment image, the software 

image encryption key S is encrypted with the device-unique 

key K. The resulting value, denoted as E[K](S), is written in 

the header of the encrypted software image (step 6). The flash 

memory now contains an encrypted software image, with a 

header that is specifically encrypted for the device it is stored 

on. 
 



At the end of the setup phase the enrollment image is removed 
from SRAM. The provisioning PC triggers the necessary 
mechanisms in the microcontroller to lock the software images 
in flash and to disable the debug port. 

 

Fig. 4:  SRAM PUF-based software protection mechanism, setup phase. 

2) Runtime operation 
The runtime flow is depicted in Fig. 5. First the 

microcontroller boot loader copies the first boot image into the 
SRAM of the microcontroller (step 1) and triggers execution 
(step 2). The boot stage code reads the SRAM PUF values 
(step 3) as well as the Helperdata (step 4). The Fuzzy Extractor 
algorithm in the boot image uses these values to reconstruct the 
device-unique root key K. The key K is used to decrypt the 
header of the software image (step 5). Decrypting the software 
image header results in the software image key S, which is then 
used to decrypt the software image in flash (step 6) as it is 
being copied to execution SRAM (step 7). When the full 
software image is decrypted and available in the SRAM, 
execution of the image is triggered (step 8).  

      The PUF plays an essential role in providing the 

microcontroller with a device-unique cryptographic root key 

that is used to bind the software image to the specific device. 

The root key is only temporarily reconstructed in working 

memory to decrypt the header of the software image. 

Likewise, the decrypted software image key is only 

temporarily present in working memory to decrypt the 

software image. When the device is powered off, the plain 

software disappears from the execution SRAM memory. Only 

encrypted values are left in the flash memory.  

 

 

Fig. 5:  SRAM PUF-based software protection mechanism, runtime operation. 

The software protection method described in this section 
can be retrofitted to existing devices as it is completely 
software based. Still, the root of trust originates from the 
SRAM PUF in hardware. The core component that enables this 
mechanism is the Fuzzy Extractor that enables key 
reconstruction from a standard SRAM memory available in the 
microcontroller.  

An open source reference implementation of such a Fuzzy 
Extractor is available as part of the prpl Security Framework, 
see [19]. 

 

C. Device authentication to the cloud 

In this use case scenario, we describe how the SRAM PUF 
is used as a basis to connect IoT end nodes securely to a cloud 
service such as Amazon Web Services or Microsoft Azure 
cloud. We assume that the IoT device employs an off-the-shelf 
microcontroller as its main processing unit. An OEM (Original 
Equipment Manufacturer) owns both the devices and the 
service that is running in the cloud. The situation is depicted in 
Fig. 6.  

1) Installation phase 
In the installation phase (step 1) the OEM installs its IoT 

Service on the cloud platform of choice. The cloud service has 
its own private/public key pair denoted dS/QS. This key pair is 
used to authenticate the service toward its clients. Furthermore, 
the cloud service knows the public key QCA of a trusted 
Certificate Authority. This public key is used to verify device 
identity certificates of the end nodes that connect to the cloud 
service. 

The OEM also provides a software image to the Contract 
Manufacturer for installation on the IoT devices (step 2). 
Embedded in this software image is the URL of the cloud 
service, as well as the public key QS of the cloud service. This 
key is used to authenticate the OEM IoT service toward the 
device. The software image contains the following 
submodules: 

• Fuzzy Extractor: The software library that reads out the 
uninitialized SRAM values from a reserved part of the 
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Fig. 6:  Cloud authentication mechanism based on SRAM PUF. 

 

SRAM of the IoT device in order to reconstruct a device-
unique cryptographic key K.  

• TLS & crypto library: A software library that contains 
cryptographic functionality for securing a network 
connection using the Transport Layer Security protocol 
[20]. 

• Connectivity library: A network stack running on the IoT 
device, which enables the device to connect to Internet 
services. It will typically set up a TCP/IP stack over a 
physical network connection such as ethernet or Wi-Fi. 
Furthermore, it will support a connectivity protocol such as 
MQTT (Message Queuing Telemetry Transport) to run on 
top of the TCP/IP stack [21]. 

• OEM Application: The actual application software that 
provides the device with the intended functionality. 

2) Setup phase 

      Every device will go through a setup phase in the 

production environment of the Contract Manufacturer, which 

operates on behalf of the OEM. As part of this enrollment 

step, the Fuzzy Extractor reads out the SRAM PUF values 

(step 3) and generates Helperdata (step 4), which is stored in 

non-volatile memory. The device-unique cryptographic key K 

is output by the Fuzzy Extractor and used with a Key 

Derivation Function in the TLS crypto library to derive an 

asymmetric elliptic curve device key pair dD/QD. The private 

key of this key pair is never stored in any non-volatile memory 

and reconstructed on the fly only when needed. The public 

device key QD is sent via the contract manufacturer PC or 

Automated Test Equipment to the Certificate Authority 

service (step 6). The CA generates a device certificate, which 

includes the device public key QD as well as a signature 

created with the CA private key dCA. Optionally the certificate 

may include other chip or device IDs. The device certificate, 

denoted as $[dCA](QD), is stored in non-volatile memory on the 

device (step 7). After this step the device has an “identity” in 

the form of a public-key certificate 

 
Note that this phase implements a one-time-trust event 

where the contract manufacturer assures that the device public 
key QD is valid for the specific device and triggers the 
generation of a certificate at the CA. The contract manufacturer 
is trusted for correctly requesting certificates for public keys of 
the devices. It does not have to be trusted to handle any 
sensitive private keys.  

3) Runtime operation 
Once the IoT device is in the field, it can now 

autonomously set up secure connections to the OEM IoT 
Service. First, the Fuzzy Extractor is used to reconstruct the 
device-unique cryptographic key K from a readout of the 
SRAM PUF (step 8) and the Helperdata (step 9). The 
cryptographic key K is then used by the crypto library to derive 
the asymmetric key pair dD/QD (step 10) and prepare for 
cryptographic support of the secure network connection. 



The connectivity library contacts the Internet service via the 
URL that is fixed in the OEM software image (step 11). A TLS 
connection is then set up where the server is authenticated 
toward the device based on the public key QS that is stored in 
the OEM SW image (fetched via step 11). The Device 
Certificate (obtained via step 12) is used to authenticate the 
client IoT device toward the OEM IoT cloud service. Setting 
up the TLS connection (step 13) uses support from the crypto 
algorithms in the TLS layer (step 14) and on a high level 
proceeds as follows [20], see also Fig. 7: 

a. Client and Server exchange initial messages where the 
client sends to the server a list of ciphers that it supports. 
The server compares this list with the ciphers that it 
supports and selects its preferred cipher that both sides 
support. In this case we assume that TLS_ECDHE_ECDSA 
is supported by the client and selected for setting up the 
secure connection. This cipher combination uses elliptic 
curve Diffie-Hellman key exchange to set up a shared 
session key, and the elliptic curve digital signature 
algorithm for authentication (i.e. message signing). 

b. The server determines the elliptic curve parameters, 
including the elliptic curve base point P. The server 
randomly generates an ephemeral elliptic curve key pair 
dSR/QSR, where QSR = dSR∙P and signs the ephemeral public 
key QSR with its private key dS using the ECDSA signature 
algorithm. Note that the operator “∙” denotes point 
multiplication over the elliptic curve. The signature value is 
denoted as $[dS](QSR). 

c. Then the server sends the signed ephemeral public key 
$[dS](QSR) to the client, together with the elliptic curve 
parameters.  

d. The client uses the server’s public key QS to verify that QSR 
was signed correctly.  

e. The client sends its public key certificate to the server. The 
server uses the CA public key QCA to verify the certificate 
and to be assured of the correct device’s public key QD. 

f. The client also randomly generates an ephemeral elliptic 
curve key pair dDR/QDR, where QDR=dDR∙P. The public 
ephemeral key QDR is sent back to the server. 

g. The client uses its private key dD to sign the TLS transcript 
(messages exchanged in steps a-f) and sends the signature 
to the server. 

h. The server verifies the signature using the previously 
verified device public key QD.  

i. The client computes a shared secret as S = dDR∙QSR = 
dDR∙dSR∙P over the elliptic curve group. 

j. The server computes the same shared secret as S = dSR∙QDR 
= dSR∙dDR∙P 

Now that both client and server side have the same shared 
key S, symmetric session keys are derived from it to encrypt 
and authenticate further messages that are exchanged between 
both sides. Note that authentication of the client IoT device 
toward the server is done through steps e, g and h. The private 
device key dD that is used for this authentication step is derived 

from the PUF key K. When the IoT device is powered off, no 
private keys are present. No sensitive data is ever stored in any 
NVM memory.  

 

 

Fig. 7: Simplified overview of TLS key agreement steps based on ECDH 

protocol. 

The SRAM PUF provides the flexibility to instantiate a 
device-unique key in the device and form the basis of a device 
identity (through the device certificate). No IDs or keys have to 
be injected by the silicon manufacturer. The OEM can decide 
to run the enrollment step at any semi-trusted time and place in 
the production chain. This has the advantage that the OEM can 
take device security in its own hands, without having to rely on 
key injection by the silicon manufacturer and secure handover 
of installed keys. This reduces key provisioning costs in the 
production chain considerably. 

V. CONCLUSIONS 

SRAM-based Physical Unclonable Functions form a 
universal method to securely store cryptographic keys in the 
chips of IoT devices. SRAM PUF provides hardware-rooted 
security that is enabled via software. When the device is 
powered down, no secrets are stored in memory, making 
cryptographic keys impossible to extract. In addition, SRAM 
PUF provides a high grade of flexibility all through the device 
supply chain. Every device can generate its own keys at any 
wanted point in the production chain. The entropy of these 
keys is determined by randomness in the physics originating 
from minute and uncontrollable process variations in the 
silicon production process. This makes PUF-based 
implementations much more resilient than traditional key 
injection options. The flexibility of the SRAM PUF process 
results in cost reductions as external key management 
infrastructure is kept to a minimum. SRAM PUF technology 
works reliably on any device that has silicon SRAM onboard: it 
will become the option of choice to establish trust in silicon for 
billions of devices that make the future Internet of Things. 
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