
www.embedded-world.eu

Secure Device Management for the Internet of Things

Geert-Jan Schrijen
Intrinsic ID

Eindhoven, The Netherlands
geert.jan.schrijen@intrinsic-id.com

Georgios Selimis
Intrinsic ID

Eindhoven, The Netherlands
georgios.selimis@intrinsic-id.com

Jan Jaap Treurniet
Technolution

Gouda, The Netherlands
jan.jaap.treurniet@technolution.eu

Abstract— There are many examples of devices in the
critical infrastructure around us that are connected to the
Internet, for example traffic lights, water treatment plants
and wind turbines. Far-reaching introduction of IT
technologies has made these infrastructures not only
increasing in complexity, but also made them more
vulnerable for cybercriminals. Network operators
increasingly hassle with the difficulty of keeping their
network secure.

One of the key components in the security of an Internet-
connected device is a reliable root of trust from which the
device’s software and operations can be secured. A root of
trust comprises an immutable piece of hardware and
trusted boot code as well as a device-unique cryptographic
identity that can be verified by the Cloud infrastructure.
Existing methods for securely storing such an identity in
large numbers of devices often rely on keys stored in one-
time programmable memory; a method that does not scale
to the billions of devices in the IoT.

In this paper we introduce an alternative method for
secure initiation of a cryptographic identity based on
Physical Unclonable Functions (PUFs). With PUF
technology every device's main processor chip can
generate its own cryptographic identity based on the
unique characteristics of its silicon. To make these unique
device identities easily manageable for an application
provider, we introduce the concept of a "security
manager" service. This service handles the complexity of
securing the connections to the individual devices in the
connected critical infrastructure, while at the same time
providing an easy management interface to the application
provider. We describe protocols for device enrollment,
authentication, (de)commissioning, and encrypted
communications that are handled by the security manager
service. Using this service, the application provider has a
uniform mechanism to securely operate all its devices,
increasing trust and security in the infrastructure around
us.

Keywords — Security; Internet of Things; Physical Unclonable
Function; Secure Key Storage; Device Management

I. INTRODUCTION
Every day more and more devices are getting connected to the
Internet. Internet connectivity provides an effective and cost-
efficient way to control and monitor devices from a distance.
Remote monitoring of devices in the field, in combination
with analytics in the Cloud, provides the ability to do
predictive maintenance. Being able to predict when devices
are going to fail can save a lot of cost compared to routine- or
time-based preventive maintenance. This is one of the reasons
Cloud connectivity and analytics are increasingly being
adopted by infrastructure around us. For example, water
management installations and power stations deploy an
increasing number of network-connected sensors and
valves/switches to control and monitor their networks.
Railway companies monitor track switches and conductor
rails’ power. Road infrastructure such as traffic lights and road
signs is getting connected to the Internet to provide and
receive information about traffic conditions.

The number of Internet-connected devices is expected to run
in the tens of billions by 2030 [14][2]. With this growing
number of devices and an increasing complexity of the
connectivity infrastructure around these devices comes a
growing security risk. Many things can go seriously wrong
when critical infrastructure is influenced or manipulated by
malicious hackers. An eye-opening example was the 2015
cyber-attack on the Ukraine power plant [17], where attackers
managed to successfully compromise information systems of
energy distribution companies and temporarily disrupted the
electricity supply to the end consumers. But things can
potentially get much worse than a power outage. Cyber-
attacks could manipulate water management controls [16] and
cause floods or water poisoning, and interference with nuclear
power plant operations [15] could lead to nuclear disasters.
Such attacks can form a serious threat to the lives of citizens.

Securing large amounts of devices is already a challenge for
big international companies. It will certainly be an even bigger
challenge for smaller companies that manage subsystems in
the industrial infrastructure around us. Such companies may
not have the required security experience in house to assess
their cyber risks and build a network infrastructure that is
easily managed yet properly secured. Time to market is often
key when deploying new solutions, putting pressure on

covering all security aspects with a first deployment. Another
challenge is to keep the security mechanism up to date over
time when new attack vectors are discovered, or system
vulnerabilities are found.

Fig. 1: Overview of IoT Device management Platform. Various
Application Providers use the platform to easily manage connections
to their devices in a secure and scalable way.

In this paper we describe a platform (Fig. 1) that facilitates
device management from the Cloud, in a way that provides
high ease of use to an Application Provider. It allows an
Application Provider to control connected devices from a
Cloud portal with a high ease of use. The platform provides
the underlying mechanisms to securely connect applications to
individual IoT devices in the field. Strong authentication
mechanisms based on Physical Unclonable Functions (PUFs)
are used to guarantee security on the device side, in a way that
is seamless to the Application Provider. The Application
Provider is not bothered with handling the unique keys per
device that are needed on the lowest level to secure the device
connections. Instead, the Application Provider deals with a
single point of contact to manage all its devices via the Cloud
platform.

II. SYSTEM ARCHITECTURE FOR SECURE DEVICE
MANAGEMENT

In this section we describe the high-level architecture of the
secure device management platform and explain how it is used
to manage devices in their life-cycle from production to end of
life.

A. Architecture overview
We describe a platform for secure management of IoT
devices. The platform consists of a Cloud side and a device
side. An overview is depicted in Fig. 2. We assume that the
main components of the platform are owned by a platform
owner, who offers the use of these components to Application
Providers in the form of a subscription service. The

Application Provider uses generic IoT devices (based on
standard microcontrollers and connectivity modules) and
installs them in the field. The Application Provider
furthermore runs a Cloud application or service that processes
data coming from the IoT devices and controls actions on the
IoT devices remotely. IoT devices may connect directly to the
Internet (e.g. through a 3G/4G communication module), or
optionally through a hub (e.g. a LoRa or Bluetooth hub).

The main component of the platform consists of the Platform
Back-end, which manages the connections between IoT
devices and Cloud Applications. Devices are set up at
manufacturing (on behalf of the Application Provider) with
the required platform mechanisms and credentials to set up a
secure connection with the Platform Back-end. This is
arranged by the so-called Device Gateway component, which
is provided by the platform provider for integration into the
IoT Device. Alternatively, the Device Gateway can be a
separate device that acts as a hub to connect multiple low-end
sensor nodes that cannot connect to the Internet directly (but
are for example based on Bluetooth, LoRa or other
connectivity standards).

The platform provider provides a so-called Application Back-
end Gateway for integration into the Cloud Application
service. The Application Back-end Gateway component
manages the connection from the Cloud Application to the
Platform Back-end.

Fig. 2: Architecture overview: Platform Back-end manages the
connections between IoT devices and various Cloud Applications. The
connections are end-to-end secured (indicated with dashed arrow),
such that the exchanged data remains secret to the Platform
provider and cannot be manipulated.

The device management platform is generic and can deal with
multiple Application Providers. When a technician of the
Application Provider installs an IoT Device in the field, he
simply scans the device’s identity sticker with an app on his
phone to let the Platform execute the commissioning protocol
in the background. The commissioning protocol makes sure
that the IoT Device is registered with the correct Cloud
Application. The platform enables the IoT Device to set up an
end-to-end secure connection between the IoT Device and the
Cloud service Back-end (Gateway) that is inaccessible by the
platform.

www.embedded-world.eu

B. Architecture Components
The architecture comprises the following entities and
components:
- The Platform Back-end provides safe exchange of IoT

data but doesn’t have access to the data. It sets up secure
connections between IoT Device (Gateway) and the
Application Back-end.

- The Application Back-end is built by the Application
Provider. In this component the device data will be
processed. Furthermore, control commands and data (e.g.
device software updates) can be sent back to the
connected IoT devices.

- The Application Gateway connects the Platform Back-
end to the Application Back-end. In this component the
device data will be decrypted. The following variants are
possible:

o Integrated in the Application Back-end or
provided by the platform provider as an
application. We focus on this variant.

o Integrated in the Platform Back-end. In this case
the Application Back-end is connected to the
platform through a secure tunnel. This mean that
the platform has access to the data and therefore
should be trusted by the Application Provider.

- The IoT Device is developed by the Application
Provider.

- The Device Gateway is part of the device management
platform and provides the security features on the device
side. There are three possible variants of this component:

o As software-only-module. The device
manufacturer or the Application Provider
integrates a dedicated security library with the
software that is running on the device. We focus
on this variant.

o As hardware-module. The device manufacturer
integrates the required device management
security features into the hardware of the
device’s main chip.

o As a separate device, connecting existing
devices to the device management platform
without requiring modifications to the IoT
Device. In this case the platform does not secure
the channel between Device Gateway and IoT
Device, hence an alternative secure connection
or trusted environment is supposed to be in
place.

C. Device Lifecycle
From production of the IoT Device until end of life, we
consider the following stages in the device lifecycle:

• Device Production: The device is programmed with
firmware and provisioned with the root public key of
the platform by the Application Provider.

• Initial Commissioning: in a safe environment, every
device is provisioned with its own unique
cryptographic keys and device certificates are
installed. The device is registered to the platform. It

is now enabled to set up a secure connection with the
platform but is not yet connected to any Application.

• Application Commissioning: The IoT Device is
installed in the field by a mechanic of the Application
Provider. Furthermore, the device is connected to the
Cloud service of the Application Provider. A
connection request is handled by the Platform Back-
end. Credentials are exchanged, enabling the device
to set up a secure connection with the Application.

• Field Operation: The IoT Device is up and running
in the field, sending data to the Application Back-end
and receiving commands from the Application Back-
end. All communication with the Application Back-
end is done over a secure channel, which cannot be
intercepted by the Platform Back-end.

• Decommissioning: When taken out of operation, the
Application Provider can decide to decommission a
device. The decommissioning request is handled by
the Platform Back-end. After decommissioning the
device is restored in the commissionable state and
disconnected from any Application. It can be re-
commissioned by the (same or another) Application
Provider.

• End of Life: When the device is broken or
malfunctioning it can be taken out of operation
completely by revoking its credentials on the
Platform Back-end. The device is in a non-
commissionable state.

D. Cloud infrastructure
Platform Back-end, Application Back-end and Application
Back-end Gateway are Cloud-based services. They can run in
any standard Cloud such as Amazon Web Services or
Microsoft Azure. This ensures that the services have a high
reliability and availability and that secure service management
features (e.g. Cloud-side key management) can be used
effectively.

III. SECURITY ARCHITECTURE
This section describes a security architecture, which is suitable
for being applied to the system that is described in the
previous section.

A. Security Objectives
We focus on the security aspects that are related to the secure
connectivity of the IoT devices to the Cloud. This is the most
challenging part to secure, because IoT devices are often
constrained in resources and based on relatively simple
microcontrollers. Security aspects related to the Cloud
services and user access management to these services are out
of scope for this work. They can be handled by the standard
mechanisms provided by the Cloud providers (i.e. Amazon,
Microsoft) on which the security manager platform is
deployed.

The main goal of the security architecture is to enable secure
data exchange between the Application Back-end and IoT
Device, where the following objectives should be met:

1. IoT Device and Application Back-end can securely
exchange data, facilitated by the Platform Back-end
in such a way that data shall be confidential to all but
the sender and receiver. Furthermore, the receiver
shall be assured of authenticity and freshness of data
and the identity of its origin.

2. Platform Back-end can securely exchange packets
with IoT Device and Application Back-end where
packets shall be confidential to all but sender and
receiver, and sender and receiver are assured of each
other’s identity.

3. Platform Back-end is in control of which IoT Device
can connect to Application Back-end. Connection
and Disconnection request can only be initiated by
Application Back-end. Only the Platform Back-end
shall be able to add/remove connections after
verification of a (dis)connection request.

Objective 3 requires the Platform Back-end to verify integrity
and authenticity of connection/disconnection requests made by
the Application Back-end. It requires a strong authentication
mechanism between two server-side entities, which can be
implemented with security mechanisms provided by the Cloud
provider on which the device management system is
implemented. That part is therefore out of scope for this paper.
Instead, we will focus on meeting the security objectives 1 and
2. These objectives can be met only by setting up an end-to-
end security mechanism between the IoT Device and
Application Back-end and between IoT Device and Platform
Back-end.

An end-to-end security mechanism is based on a
cryptographic protocol that is implemented between the two
parties. The security of such a protocol relies on devices being
able to securely manage the involved cryptographic keys, as
well as being able to execute their software code in a trusted
way. It can be very challenging to create such a secure
environment on a low-cost IoT Device. In the following
subsections we will explain how a security subsystem on an
IoT Device can be set up in a secure, flexible and cost-
efficient way based on SRAM PUF technology (see also [12]).

B. Root of Trust
An IoT Device in the field is susceptible to many forms of
attack, ranging from physical tampering to network-based
attacks or running of malicious code. To communicate with
the Cloud in a trusted manner, a device must have a well-
protected security subsystem where cryptographic algorithms
can be executed in a secure way and where sensitive
cryptographic keys can be securely handled and stored. Such a
security subsystem is bootstrapped by a root of trust on the
device.

A root of trust can be defined as a minimal set of software,
hardware and data that must be implicitly trusted in the

platform – there is no software or hardware at a deeper level
that can verify that the Root of Trust is authentic and
unmodified [10]. It is therefore of utmost importance to make
sure that the Root of Trust is implemented in a secure way. A
secure boot mechanism can be used to make sure that the code
running inside the security subsystem cannot be modified by
an attacker. It requires a first boot stage to be implemented in
(unmodifiable) ROM code, which verifies the integrity of a
second stage boot loader before its execution. Integrity
verification is typically done by computing a hash value of the
second stage boot loader and verifying it with a hash value
stored in ROM. The second stage boot loader again verifies
the integrity of the next software layer before execution, and
so on. To bring the flexibility into the secure boot mechanism
to allow for software updates, typically the second stage boot
loader (as well as subsequent stages of code) verifies the next
stage based on a digital signature. Verification is done with a
public key that is hard-coded as part of the running software
stage to make sure it cannot be modified. The corresponding
private key is used by the software provider to sign the
software code image and updates of it.

As explained above, authenticity and integrity of code can be
achieved with an initial piece of unmodifiable ROM code and
cryptographic checks of subsequent software stages. Note that
confidentiality is not needed for this authenticity check. The
ROM code provides a root of trust for integrity, even when the
code is completely readable. However, for other purposes a
security subsystem also needs to store secret keys, which must
always be kept confidential. For example, keys that are used to
encrypt sensitive data on the device or keys for authentication
to the network need to be kept secure to prevent loss of
sensitive data or cloning of devices (by means of copied
authentication keys). Such sensitive secret keys cannot be
stored as part of a code image, since we have to assume that
an attacker can read out code from the device and reverse
engineer it. A secure key storage mechanism is hence needed
to protect such secret keys from attackers. In other words,
besides a root of trust for integrity, we also need a root of trust
for confidentiality.

Implementation of a secure key storage mechanism on an IoT
Device turns out to be quite a challenge in practice. Secure
Elements are specialized integrated circuits, with a collection
of security mechanisms, that are connected to a device’s main
processor IC and can be used for this purpose. However, they
are relatively expensive to add onto a low-cost IoT Device and
introduce additional security issues, since the interface to such
an external component requires additional protection [6].
Secure non-volatile memory (NVM) inside the device’s main
IC sounds like a better approach, but also has several potential
issues. For example, the use of one-time-programmable
memory requires keys to be injected at an early stage in the
production chain. This process implies that secret keys are
handed over from device manufacturer to silicon
manufacturer, and hence are revealed to different parties in the
production chain. This creates undesired liabilities for both

www.embedded-world.eu

parties, as the root keys are known outside the device’s
security boundary. In the IoT this problem is enormously
amplified by the sheer number of devices [4]. On low-end
microcontroller devices, secure flash memory is often not
available, and therefore not an option for storage of sensitive
keys.

A universal, flexible and low-cost secure key storage
mechanism is hence needed to create a strong root of trust for
confidentiality on a wide variety of IoT Devices. In the next
subsections, we present a new and innovative secure key
storage solution based on SRAM Physical Unclonable
Function technology.

C. Physical Unclonable Functions
Physical Unclonable Functions (PUFs) are known as
electronic design components that derive device-unique
silicon properties, or silicon fingerprints, from integrated
circuits (ICs). The tiny and uncontrollable variations in feature
dimensions and doping concentrations lead to a unique
threshold voltage for each transistor on a chip. Since even the
manufacturer cannot control these exact variations for a
specific device, the physical properties are de facto
unclonable. These minute variations do not influence the
intended operation of the integrated circuit. However, they can
be detected with specific on-chip circuitry to form a device-
unique silicon fingerprint. The implementation of such
measurement circuit is what is called a PUF circuit. There are
several alternatives to implementing PUF circuits into an IC.
They vary from comparing path delays and frequencies of
free-running oscillators to measuring startup data from
memory components [7]. A particularly promising PUF
technology is based on SRAM memory. The SRAM PUF has
excellent stability over time, temperature and supply voltage
variations, and it provides the highest amounts of entropy [5].
Furthermore, it is available as a standard component in almost
every IC. The latter aspect has important advantages in terms
of deployment, testability and time to market. SRAM PUFs
can be used in standard chips by software access to
uninitialized SRAM memory at an early stage of the boot
process. Hence, it is not necessary to integrate special PUF
circuitry into the hardware of the chip when using SRAM PUF
technology.

1) SRAM PUF
SRAM PUFs are based on the power-up values of SRAM
cells. Every SRAM cell consists of two cross-coupled
inverters. In a typical SRAM cell design, the inverters are
designed to be nominally identical. However, due to the
minute process variations that occur during manufacturing, the
electrical properties of the cross-coupled inverters will be
slightly out of balance. In particular, the threshold voltages of
the transistors in the inverters will show some random
variation. This minor mismatch gives each SRAM cell an
inclination to power-up with either a logical 0 or a logical 1 on
its output, which is determined by the stronger of the two
inverters. Since this variation is random, on average 50% of
the SRAM cells have 0 as their preferred startup state and 50%

have 1. Note that SRAM memory is normally used by writing
data values into the memory and reading back the written
values at a later point in time. To use SRAM as a PUF, one
simply reads out the memory contents of the SRAM before
any data has been written into it. Reliability and uniqueness
properties of SRAM PUF have been analyzed thoroughly over
the past years over a wide range of technology nodes and
under a wide variety of external conditions (e.g. voltage,
temperature) [5].

D. PUF-based Key Storage
PUFs can be used to reconstruct a device-unique
cryptographic root key on the fly, without storing secret data
in non-volatile memory. This root key is used by the security
subsystem to encrypt (and integrity-protect) additional
cryptographic keys that are used inside the subsystem.

Since PUF responses are noisy, they cannot be used directly as
a cryptographic key. To remove the noise and to extract
sufficient entropy, a so-called Fuzzy Extractor is needed [1]. A
Fuzzy Extractor or Helperdata Algorithm is a cryptographic
primitive that turns PUF response data into a reliable
cryptographic root key.

Fig. 3: A Fuzzy Extractor operates in two basic modes: i) In
Enrollment mode (steps 1-2) Helperdata is generated based on a
measured SRAM PUF response, ii) In the Key Reconstruction mode
(steps 3-5) the Helperdata is combined with a fresh SRAM PUF
response for reconstructing the device-unique cryptographic root
key.

The Fuzzy Extractor (see Fig. 3) has two modes of operation:
Enrollment and Key Reconstruction.
In Enrollment mode, which is typically executed once over the
lifetime of the chip, the Fuzzy Extractor reads out an SRAM
PUF response and computes the so-called Helperdata that is
then stored in (non-volatile) memory accessible to the chip
[8].

Whenever the cryptographic root key is needed by the chip,
the Fuzzy Extractor is used in the Key Reconstruction mode.
In this mode a new SRAM PUF response is read out and
Helperdata is applied to correct the noise. A hash function is
subsequently applied to reconstruct the cryptographic root
key. In this way the same key can be reconstructed under
varying external conditions such as temperature and supply
voltage.

Important: by design, the Helperdata does not contain any
information on the cryptographic key itself and it can therefore
be safely stored in any kind of unprotected Non-Volatile
Memory (NVM), on or off chip. At rest, when the device is
powered down, no secret is ever present in memory, making it
a cost-effective alternative to traditional anti-tamper features.

1) Key Vault
The root key that is securely reconstructed with the Fuzzy
Extractor, can subsequently be used to encrypt and decrypt a
next layer of keys. The root key never leaves the security
context of the Fuzzy Extractor. In this way, a secure key vault
is established. Keys that are encrypted with the root key, can
be unlocked (decrypted) only on the device on which they
were locked. Copying all non-volatile information (Helperdata
and encrypted keys) from one chip to another does not copy
the keys. Key vault functionality is one of the main use cases
for PUF technology [12].

2) Root Key Provisioning
Provisioning root keys into a chip is an essential step in
establishing a root of trust anchored in hardware. Traditional
key storage methods require the root keys to be injected at an
early stage in the production chain. This process implies that
secret keys are handed over from device manufacturer to
silicon manufacturer, and hence are revealed to different
parties in the production chain. This creates undesired
liabilities for both parties as the root keys are known outside
the device’s security boundary. In the IoT this problem is
enormously amplified by the sheer number of devices.

PUF-based secure key storage has the advantage that root keys
do not have to be transferred or handled by the chip
manufacturer or the device manufacturer. Every device can
generate its own cryptographic root key, at any stage in the
production process.

3) Device Identity
Besides using the root key for encryption/decryption of
additional cryptographic keys that are needed by the system, it
can also be used as a root key for further key derivation. With
additional context data as input, other symmetric and
asymmetric (elliptic curve) cryptographic keys can be derived.
For example, to securely authenticate a device that is
connecting to a Cloud service, or for unmanned machine-to-
machine connectivity, every single device must have a strong
cryptographic identity. Such identity typically consists of an
asymmetric key pair, composed of a public key and a private
key.

A cryptographic identity can be derived from the device-
unique root key via a key derivation mechanism. This is
depicted in Fig. 4. The private key of the elliptic curve key
pair never leaves the security boundary of the security
subsystem. The public key, on the other hand, can be output

and communicated to external entities. According to the well-
known Public Key Inrastructure (PKI) model, before the key
pair can be used for device authentication a trusted entity
needs to assert that the public key belongs in fact to a specific
device (e.g. specific brand, model, serial number). This
assertion is created in the form of a digital certificate. The
trusted entity is typically the OEM who manufactures the
device, although many variations in the supply chain setup are
possible. To make the identity certificates globally verifiable,
the OEM can use the services of a trusted Certificate
Authority (CA) to sign the actual certificates.

Fig. 4: PUF-based Identity provisioning. Reconstruction of
cryptographic root key from Helperdata and SRAM PUF response
(steps 1-3). Derivation of elliptic curve private/public key pair (step
4). Export of device public key in Certificate Signing Request to CA
(step 5). Device identity certificate generation (step 6).

Devices are authenticated by sending their digital certificate,
which includes the public key, to the verifying entity, e.g. the
Cloud service or another device. The verifying party checks
the contents of the certificate and verifies that it is correctly
signed by a party it trusts (by a trusted public key certificate).
The device public key that is in the certificate can then be used
to verify the authenticity of the device by means of established
authentication protocols. For example, a challenge-response
protocol can be used in which the verifying party generates a
random number and sends it to the device. The device
generates a response value using its private key (after deriving
it from the reconstructed PUF-based root key) by computing a
digital signature on the received challenge. The verifying party
receives the response and verifies that the signature is correct
using the device public key part of the digital certificate.

4) Advantages
SRAM PUF technology forms a universal solution for the
storage of cryptographic keys in the chips of IoT Devices.
SRAM PUF technology provides hardware-rooted security
that is enabled via software. When the device is powered
down, no secrets are stored in memory, making cryptographic
keys impossible to extract. In addition, SRAM PUF provides a
high grade of flexibility all through the device supply chain.
Every device can generate its own keys at any wanted point in
the production chain. The entropy of these keys is determined

www.embedded-world.eu

by randomness in the physics originating from minute and
uncontrollable process variations in the silicon production
process. This makes PUF-based implementations much more
resilient than traditional key injection options. The flexibility
of the SRAM PUF process results in cost reductions as
external key management infrastructure is kept to a minimum.

E. End-to-End Security Protocol
In this subsection we focus on the end-to-end security protocol
that is used by the IoT Device to set up secure connections
with the Application Back-end and the Platform Back-end.
The IoT Device will communicate with the Platform Back-end
via the MQTT protocol [19] over a TLS connection [18]. The
Platform Back-end runs an MQTT broker service. The
Application Back-end also sets up a TLS connection with the
Platform Back-end and communicates on the same MQTT
topic as the IoT Devices use. This way, MQTT messages can
be exchanged between IoT Devices and Application Back-
end. By means of an end-to-end security protocol, messages
are encrypted end-to-end between IoT Device and Application
Back-end. The Platform Back-end is not able to read the
contents or alter the exchanged messages between IoT Device
and Platform Back-end (Fig. 5).

Fig. 5: End-to-end security from Device Gateway to Application Back-
end Gateway, on top of individual MQTT/TLS connections with the
Platform Back-end service.

1) Setup Phase (Manufacturing and Initial
Commissioning)

The Platform Back-end needs to trust the CA that is going to
sign the device identity certificates, and hence knows its
public key. We assume that this CA public key certificate is
installed in the certificate store of the Platform Back-end
servers. Similarly, we assume that the CA public key
certificate is part of the Application Gateway software. We
furthermore assume that the Platform Back-end as well as
every Application Gateway has its own asymmetric key pair
and public key certificate issued by the CA.

During manufacturing of the IoT Devices, the “Device
Gateway” software is installed. It includes the software stack
for application and connectivity and useful configuration data
(e.g. MQTT topics) for the IoT Device to be ready for
connection with Platform Backend and start
receiving/transmitting packets. As part of the security stack it
contains Fuzzy Extractor software that is configured to access
uninitialized SRAM on the device. Furthermore, the Device
Gateway contains the CA public key certificate for
verification of certificates used in the system.

During manufacturing, the IoT Device executes the Fuzzy
Extractor enrollment step and stores the generated Helperdata
in its non-volatile memory (NVM). An elliptic curve key pair
is derived, and the public key is used to generate a certificate
signing request (CSR). The manufacturing environment is
trusted for presenting the correct CSR (including device public
key and device ID value) to the CA, which in turn generates a
valid device identity certificate. The identity certificate is
stored in the device’s Non-Volatile memory (NVM). The
device ID is printed on a sticker (e.g. in the form of a QR
code) to enable easy scanning of the ID in the application
commissioning phase.

2) Application Commissioning
An installation engineer of the Application Provider scans the
device ID on the sticker of the IoT Device (with a specific
scanner device or with a smart-phone app that is connected to
the servers of the Application Back-end) and submits it to the
Application Back-end. The Application Gateway submits a
connection request, using the scanned device ID, to the
Platform Back-end. The Platform Back-end decides whether
the Device can be registered to the intended Application Back-
end. If the connection is allowed (i.e. if the device is not
registered with other Application Back-ends), the Platform
Back-end manages the exchange of the following certificates:

1. Application Gateway certificate is sent to IoT Device
2. IoT Device certificate is sent to the Application

Gateway

From then on, all communication from IoT Device is
forwarded to the registered Application Gateway and vice
versa.

3) In-Field Operation
The IoT Device will verify the certificate of the Application
Back-end server it connects to as part of setting up the TLS
connection, using the CA public key that is installed as part of
the Device Gateway software. Similarly, the Application
Back-end server checks the IoT Device’s identity certificate as
part of the TLS client authentication step. As a result, both
peers can agree on a common key (e.g. as the result of a
regular TLS handshake). This provides confidentiality, data
authentication and data integrity to the communication link
through which data packets are exchanged. A similar
procedure will be used for the secure communication between
Application Gateway and Platform Back-end.

The Platform Back-end assures that MQTT messages between
the IoT Device Gateway and the Application Back-end
Gateway of the connected Application are exchanged. A
Diffie-Hellman key agreement protocol is run between IoT
Device Gateway and Application Back-end Gateway. Every
peer, based on authentication credentials (other peer’s
validated certificate and its own private key), generates the
same master key. From this master key, in combination with a
session identifier, two session keys (SAK: Session
Authentication Key and SEK: Session Encryption Key) are
derived using a Key Derivation Function. Both peers end up

with the same session keys for secure exchange of application
data, if they are working with the same session ID. Note that
session IDs and keys can be updated regularly (e.g. once per
24 hours or after a predetermined number of messages
exchanged).

The Session Encryption Key is used to encrypt messages that
are exchanged between IoT Device and Application Back-end.
The Session Authentication Key is used to sign those
messages to prevent alteration of the messages. A message
counter value is increased for every every new message
exchanged and used as part of the authenticated value to
prevent replay attacks. The verifier needs to check that
messages within one session are received in increasing order.

4) Decommissioning
To decommission a device, the installation engineer scans the
device ID on the sticker of the IoT Device and indicates on his
scanner device that the device needs to be decommissioned.
The Application Back-end that is connected to the scanner
device informs the Application Gateway to submit a
decommissioning request to the Platform Back-end. The
Platform Back-end removes the device ID from its routing
table and triggers the Device Gateway and the Application
Gateway to delete each other’s certificates. A successfully
decommissioned device can be re-commissioned to a (new)
Cloud application.

5) End of Life
Non-functioning or compromised devices can be taken out of
service by the Platform Provider by blacklisting their
corresponding device IDs. On the device side it is possible to
remove the device’s identity keys. This is effectively achieved
by clearing the device’s NVM. Once a device’s Helperdata is
removed from the NVM, it will not be able to reproduce the
same cryptographic root keys and identity keys anymore.

IV. PROOF OF CONCEPT
A demonstrator implementation of the end-to-end security
protocol has been built as part of the SEMIO project, for
which Intrinsic ID and Technolution have received a Small
Business Innovation Research Programme (SBIR) award from
the Dutch government.

Fig. 6: Demo setup with STM32 IoT Device prototype

As a proof of concept for the IoT Device, we used an ST
Microelectronics STM32L476 development kit with a
microcontroller based on an Arm Cortex M4 processor (Fig.
6). The development kit can connect to the Internet via WiFi
and integrates a temperature sensor. The manufacturing
enrollment step and certificate generation step are
implemented on a PC. This PC also registers a device to the
Amazon AWS Cloud service (acting as the Platform Back-end
service) after enrollment. The application gateway is
implemented as a service running on the Amazon AWS
platform.

The PUF-based security system that is implemented as part of
the Device Gateway code uses 1 KB uninitialized SRAM
memory to extract a 256-bit device-unique root key. The
Helperdata (about 1KB in size) is stored in the Flash memory
of the STM device. The asymmetric cryptography is
implemented based on NIST P-256 elliptic curves. The
implementation of the proof of concept Device Gateway
(including Fuzzy Extractor, TLS library, TCP/IP stack and
drivers) has a code size of less than 180 kilobytes.

Fig. 7 shows a screenshot of proof-of-concept Platform Back-
end implementation on the Amazon AWS Cloud when the IoT
Device is transmitting sensor data to the Application Back-
end. The Device Management Platform handles encrypted
data, which can only be decrypted by the Application Back-
end.

The actual temperature data can only be decrypted by the
Application Back-end, as can be seen in the screenshot of the
proof-of-concept Application Back-end in Fig. 8.

www.embedded-world.eu

Fig. 7: Platform Back-end view of secure data exchange between IoT Device and Application Back-end. All exchanged MQTT messages are
encrypted.

Fig. 8: Decrypted data visible on Application Back-end

V. CONCLUSIONS
In this work we have introduced the concept of a secure device
management platform for IoT-connected devices in the critical
infrastructure. It enables Application Providers to easily
manage a large number of IoT Devices in a secure and
scalable way. An end-to-end security protocol assures that
messages communicated between IoT Device and Application
Back-end cannot be read or altered by the device management
platform itself or attackers in the network. In other words, the
device management platform manages the connections
between IoT Devices and Backend Applications, without
being able to intercept or modify the exchanged messages over
these connections. Security on the device side is bootstrapped
with an innovative secure key storage solution based on
SRAM Physical Unclonable Functions. This technology
enables every chip to generate and securely store its own
digital identity in the form of a cryptographic key pair that is
derived from its unique silicon properties. No costly key-
injection step during silicon manufacturing or external secure
element chip are needed. The flexibility of the SRAM PUF
solution enables the roll-out of a universal embedded security
approach that scales to a wide variety of IoT Devices.

ACKNOWLEDGMENT
This work was sponsored by the Dutch SBIR (Small Business
Innovation Research Programme) Cybersecurity III Phase 2
tender [20] under the name “Security manager for IoT
(SEMIO)”.

REFERENCES

[1] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data,” in Advances in
Cryptology - EUROCRYPT 2004, ser. Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2004, vol. 3027, pp. 523–540.

[2] Gartner newsroom, “Gartner Says 6.4 Billion Connected Things Will Be
in Use in 2016, Up 30 Percent From 2015”,
https://www.gartner.com/newsroom/id/3165317.

[3] B. Gassend, D. Clarke, M. van Dijk, S. Devadas, “Silicon physical
random functions” In: ACM Conference on Computer and

Communications Security (ACM CCS). pp. 148–160. ACM, New York,
NY, USA (2002).

[4] Intrinsic ID whitepaper, “Flexible Key Provisioning with SRAM PUF”,
http://go.intrinsic-id.com/flexible-key-provisioning-sram-puf-lp .

[5] Intrinsic ID whitepaper, “The Reliability of SRAM PUF”,
http://go.intrinsic-id.com/reliability-sram-puf-white-paper-lp .

[6] Intrinsic ID whitepaper, “Protecting the IoT with Invisible Keys”,
http://go.intrinsic-id.com/WP-Protecting-the-IoT-with-Invisible-Keys-
LP .

[7] S. Katzenbeisser, U. Kocabas¸, V. Rozic, A.-R. Sadeghi, I.
Verbauwhede, and C. Wachsmann, “PUFs: Myth, Fact or Busted? A
Security Evaluation of Physically Unclonable Functions (PUFs) Cast in
Silicon,” in Cryptographic Hardware and Embedded Systems (CHES)
2012, ser. Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2012, vol. 7428, pp. 283–301.

[8] J.-P. Linnartz and P. Tuyls, “New shielding functions to enhance privacy
and prevent misuse of biometric templates,” in Audio- and Video- Based
Biometric Person Authentication, ser. Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2003, vol. 2688, pp. 393–402.

[9] R. Maes, V. van der Leest, “Countering the effects of silicon ageing on
SRAM PUFs”, HOST 2014.

[10] Arm Platform Security Architecture Overview, October 2017 (Revision
1.1)

[11] Reuters, “U.S. probes cyber attack on water systems”,
https://www.reuters.com/article/us-cybersecurity-attack/u-s-probes-
cyber-attack-on-water-system-idUSTRE7AH2C320111121

[12] G.J. Schrijen, C. Garlati, “Physical Unclonable Functions to the Rescue,
A new Way to Establish Trust in Silicon”, Embedded World Converence
2018.

[13] Synopsys whitepaper, “Securing the Internet of Things – An Architect’s
Guide to Securing IoT Devices Using Hardware Rooted Processor
Security”, https://hosteddocs.emediausa.com/arc_security_iot_wp.pdf.

[14] IEEE Spectrum, “Popular Internet of Things Forecast of 50 Billion
Devices by 2020 Is Outdated”, https://spectrum.ieee.org/tech-
talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-
devices-by-2020-is-outdated

[15] The Telegraph, “German nuclear plant suffers cyber attack designed to
give hackers remote access”,
https://www.telegraph.co.uk/news/2016/04/27/cyber-attackers-hack-
german-nuclear-plant/

[16] The Register, “Water treatment plant hacked, chemical mix changed for
tap supplies”,
https://www.theregister.co.uk/2016/03/24/water_utility_hacked/

[17] Wired, “Everything We Know Aout Ukraine’s Power Plant Attack”,
https://www.wired.com/2016/01/everything-we-know-about-ukraines-
power-plant-hack/

[18] Wikipedia, “Transport Layer Security”,
https://en.wikipedia.org/wiki/Transport_Layer_Security#Client-
authenticated_TLS_handshake

[19] Wikipedia, “MQTT”, https://en.wikipedia.org/wiki/MQTT
[20] RVO subsidies, https://www.rvo.nl/subsidies-regelingen/sbir/overzicht-

sbir-oproepen/3e-tender-sbir-cyber-security

