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Abstract— There are many examples of devices in the 
critical infrastructure around us that are connected to the 
Internet, for example traffic lights, water treatment plants 
and wind turbines. Far-reaching introduction of IT 
technologies has made these infrastructures not only 
increasing in complexity, but also made them more 
vulnerable for cybercriminals. Network operators 
increasingly hassle with the difficulty of keeping their 
network secure. 
 
One of the key components in the security of an Internet-
connected device is a reliable root of trust from which the 
device’s software and operations can be secured. A root of 
trust comprises an immutable piece of hardware and 
trusted boot code as well as a device-unique cryptographic 
identity that can be verified by the Cloud infrastructure. 
Existing methods for securely storing such an identity in 
large numbers of devices often rely on keys stored in one-
time programmable memory; a method that does not scale 
to the billions of devices in the IoT.  
 
In this paper we introduce an alternative method for 
secure initiation of a cryptographic identity based on 
Physical Unclonable Functions (PUFs). With PUF 
technology every device's main processor chip can 
generate its own cryptographic identity based on the 
unique characteristics of its silicon. To make these unique 
device identities easily manageable for an application 
provider, we introduce the concept of a "security 
manager" service. This service handles the complexity of 
securing the connections to the individual devices in the 
connected critical infrastructure, while at the same time 
providing an easy management interface to the application 
provider. We describe protocols for device enrollment, 
authentication, (de)commissioning, and encrypted 
communications that are handled by the security manager 
service. Using this service, the application provider has a 
uniform mechanism to securely operate all its devices, 
increasing trust and security in the infrastructure around 
us. 
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I.  INTRODUCTION  
Every day more and more devices are getting connected to the 
Internet. Internet connectivity provides an effective and cost-
efficient way to control and monitor devices from a distance. 
Remote monitoring of devices in the field, in combination 
with analytics in the Cloud, provides the ability to do 
predictive maintenance. Being able to predict when devices 
are going to fail can save a lot of cost compared to routine- or 
time-based preventive maintenance. This is one of the reasons 
Cloud connectivity and analytics are increasingly being 
adopted by infrastructure around us. For example, water 
management installations and power stations deploy an 
increasing number of network-connected sensors and 
valves/switches to control and monitor their networks. 
Railway companies monitor track switches and conductor 
rails’ power. Road infrastructure such as traffic lights and road 
signs is getting connected to the Internet to provide and 
receive information about traffic conditions.  
 
The number of Internet-connected devices is expected to run 
in the tens of billions by 2030 [14][2]. With this growing 
number of devices and an increasing complexity of the 
connectivity infrastructure around these devices comes a 
growing security risk. Many things can go seriously wrong 
when critical infrastructure is influenced or manipulated by 
malicious hackers. An eye-opening example was the 2015 
cyber-attack on the Ukraine power plant [17], where attackers 
managed to successfully compromise information systems of 
energy distribution companies and temporarily disrupted the 
electricity supply to the end consumers. But things can 
potentially get much worse than a power outage. Cyber-
attacks could manipulate water management controls [16] and 
cause floods or water poisoning, and interference with nuclear 
power plant operations [15] could lead to nuclear disasters. 
Such attacks can form a serious threat to the lives of citizens. 
 
Securing large amounts of devices is already a challenge for 
big international companies. It will certainly be an even bigger 
challenge for smaller companies that manage subsystems in 
the industrial infrastructure around us. Such companies may 
not have the required security experience in house to assess 
their cyber risks and build a network infrastructure that is 
easily managed yet properly secured. Time to market is often 
key when deploying new solutions, putting pressure on 



covering all security aspects with a first deployment. Another 
challenge is to keep the security mechanism up to date over 
time when new attack vectors are discovered, or system 
vulnerabilities are found.  
 

 
Fig. 1: Overview of IoT Device management Platform. Various 
Application Providers use the platform to easily manage connections 
to their devices in a secure and scalable way. 

In this paper we describe a platform (Fig. 1) that facilitates 
device management from the Cloud, in a way that provides 
high ease of use to an Application Provider. It allows an 
Application Provider to control connected devices from a 
Cloud portal with a high ease of use. The platform provides 
the underlying mechanisms to securely connect applications to 
individual IoT devices in the field. Strong authentication 
mechanisms based on Physical Unclonable Functions (PUFs) 
are used to guarantee security on the device side, in a way that 
is seamless to the Application Provider. The Application 
Provider is not bothered with handling the unique keys per 
device that are needed on the lowest level to secure the device 
connections. Instead, the Application Provider deals with a 
single point of contact to manage all its devices via the Cloud 
platform. 

II. SYSTEM ARCHITECTURE FOR SECURE DEVICE 
MANAGEMENT 

In this section we describe the high-level architecture of the 
secure device management platform and explain how it is used 
to manage devices in their life-cycle from production to end of 
life.  

A. Architecture overview 
We describe a platform for secure management of IoT 
devices. The platform consists of a Cloud side and a device 
side. An overview is depicted in Fig. 2. We assume that the 
main components of the platform are owned by a platform 
owner, who offers the use of these components to Application 
Providers in the form of a subscription service. The 

Application Provider uses generic IoT devices (based on 
standard microcontrollers and connectivity modules) and 
installs them in the field. The Application Provider 
furthermore runs a Cloud application or service that processes 
data coming from the IoT devices and controls actions on the 
IoT devices remotely. IoT devices may connect directly to the 
Internet (e.g. through a 3G/4G communication module), or 
optionally through a hub (e.g. a LoRa or Bluetooth hub). 

The main component of the platform consists of the Platform 
Back-end, which manages the connections between IoT 
devices and Cloud Applications. Devices are set up at 
manufacturing (on behalf of the Application Provider) with 
the required platform mechanisms and credentials to set up a 
secure connection with the Platform Back-end. This is 
arranged by the so-called Device Gateway component, which 
is provided by the platform provider for integration into the 
IoT Device. Alternatively, the Device Gateway can be a 
separate device that acts as a hub to connect multiple low-end 
sensor nodes that cannot connect to the Internet directly (but 
are for example based on Bluetooth, LoRa or other 
connectivity standards).  
 
The platform provider provides a so-called Application Back-
end Gateway for integration into the Cloud Application 
service. The Application Back-end Gateway component 
manages the connection from the Cloud Application to the 
Platform Back-end.  
 

 

 
 

Fig. 2: Architecture overview: Platform Back-end manages the 
connections between IoT devices and various Cloud Applications. The 
connections are end-to-end secured (indicated with dashed arrow), 
such that the exchanged data remains secret to the Platform 
provider and cannot be manipulated. 

The device management platform is generic and can deal with 
multiple Application Providers. When a technician of the 
Application Provider installs an IoT Device in the field, he 
simply scans the device’s identity sticker with an app on his 
phone to let the Platform execute the commissioning protocol 
in the background. The commissioning protocol makes sure 
that the IoT Device is registered with the correct Cloud 
Application. The platform enables the IoT Device to set up an 
end-to-end secure connection between the IoT Device and the 
Cloud service Back-end (Gateway) that is inaccessible by the 
platform. 
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B. Architecture Components 
The architecture comprises the following entities and 
components:  
- The Platform Back-end provides safe exchange of IoT 

data but doesn’t have access to the data. It sets up secure 
connections between IoT Device (Gateway) and the 
Application Back-end.  

- The Application Back-end is built by the Application 
Provider. In this component the device data will be 
processed. Furthermore, control commands and data (e.g. 
device software updates) can be sent back to the 
connected IoT devices.   

- The Application Gateway connects the Platform Back-
end to the Application Back-end. In this component the 
device data will be decrypted. The following variants are 
possible: 

o Integrated in the Application Back-end or 
provided by the platform provider as an 
application. We focus on this variant. 

o Integrated in the Platform Back-end. In this case 
the Application Back-end is connected to the 
platform through a secure tunnel. This mean that 
the platform has access to the data and therefore 
should be trusted by the Application Provider.  

- The IoT Device is developed by the Application 
Provider.  

- The Device Gateway is part of the device management 
platform and provides the security features on the device 
side. There are three possible variants of this component: 

o As software-only-module. The device 
manufacturer or the Application Provider 
integrates a dedicated security library with the 
software that is running on the device. We focus 
on this variant. 

o As hardware-module. The device manufacturer 
integrates the required device management 
security features into the hardware of the 
device’s main chip.  

o As a separate device, connecting existing 
devices to the device management platform 
without requiring modifications to the IoT 
Device. In this case the platform does not secure 
the channel between Device Gateway and IoT 
Device, hence an alternative secure connection 
or trusted environment is supposed to be in 
place.  

C. Device Lifecycle 
From production of the IoT Device until end of life, we 
consider the following stages in the device lifecycle: 

• Device Production: The device is programmed with 
firmware and provisioned with the root public key of 
the platform by the Application Provider. 

• Initial Commissioning: in a safe environment, every 
device is provisioned with its own unique 
cryptographic keys and device certificates are 
installed. The device is registered to the platform. It 

is now enabled to set up a secure connection with the 
platform but is not yet connected to any Application. 

• Application Commissioning: The IoT Device is 
installed in the field by a mechanic of the Application 
Provider. Furthermore, the device is connected to the 
Cloud service of the Application Provider. A 
connection request is handled by the Platform Back-
end. Credentials are exchanged, enabling the device 
to set up a secure connection with the Application. 

• Field Operation: The IoT Device is up and running 
in the field, sending data to the Application Back-end 
and receiving commands from the Application Back-
end. All communication with the Application Back-
end is done over a secure channel, which cannot be 
intercepted by the Platform Back-end. 

• Decommissioning: When taken out of operation, the 
Application Provider can decide to decommission a 
device. The decommissioning request is handled by 
the Platform Back-end. After decommissioning the 
device is restored in the commissionable state and 
disconnected from any Application. It can be re-
commissioned by the (same or another) Application 
Provider. 

• End of Life: When the device is broken or 
malfunctioning it can be taken out of operation 
completely by revoking its credentials on the 
Platform Back-end. The device is in a non-
commissionable state. 

D. Cloud infrastructure 
Platform Back-end, Application Back-end and Application 
Back-end Gateway are Cloud-based services. They can run in 
any standard Cloud such as Amazon Web Services or 
Microsoft Azure. This ensures that the services have a high 
reliability and availability and that secure service management 
features (e.g. Cloud-side key management) can be used 
effectively.  

III. SECURITY ARCHITECTURE 
This section describes a security architecture, which is suitable 
for being applied to the system that is described in the 
previous section.  

A. Security Objectives 
We focus on the security aspects that are related to the secure 
connectivity of the IoT devices to the Cloud. This is the most 
challenging part to secure, because IoT devices are often 
constrained in resources and based on relatively simple 
microcontrollers. Security aspects related to the Cloud 
services and user access management to these services are out 
of scope for this work. They can be handled by the standard 
mechanisms provided by the Cloud providers (i.e. Amazon, 
Microsoft) on which the security manager platform is 
deployed. 
 



The main goal of the security architecture is to enable secure 
data exchange between the Application Back-end and IoT 
Device, where the following objectives should be met: 

1. IoT Device and Application Back-end can securely 
exchange data, facilitated by the Platform Back-end 
in such a way that data shall be confidential to all but 
the sender and receiver. Furthermore, the receiver 
shall be assured of authenticity and freshness of data 
and the identity of its origin.  

2. Platform Back-end can securely exchange packets 
with IoT Device and Application Back-end where 
packets shall be confidential to all but sender and 
receiver, and sender and receiver are assured of each 
other’s identity. 

3. Platform Back-end is in control of which IoT Device 
can connect to Application Back-end. Connection 
and Disconnection request can only be initiated by 
Application Back-end. Only the Platform Back-end 
shall be able to add/remove connections after 
verification of a (dis)connection request. 

 
Objective 3 requires the Platform Back-end to verify integrity 
and authenticity of connection/disconnection requests made by 
the Application Back-end. It requires a strong authentication 
mechanism between two server-side entities, which can be 
implemented with security mechanisms provided by the Cloud 
provider on which the device management system is 
implemented. That part is therefore out of scope for this paper. 
Instead, we will focus on meeting the security objectives 1 and 
2. These objectives can be met only by setting up an end-to-
end security mechanism between the IoT Device and 
Application Back-end and between IoT Device and Platform 
Back-end.  
 
An end-to-end security mechanism is based on a 
cryptographic protocol that is implemented between the two 
parties. The security of such a protocol relies on devices being 
able to securely manage the involved cryptographic keys, as 
well as being able to execute their software code in a trusted 
way. It can be very challenging to create such a secure 
environment on a low-cost IoT Device. In the following 
subsections we will explain how a security subsystem on an 
IoT Device can be set up in a secure, flexible and cost-
efficient way based on SRAM PUF technology (see also [12]). 

B. Root of Trust 
An IoT Device in the field is susceptible to many forms of 
attack, ranging from physical tampering to network-based 
attacks or running of malicious code. To communicate with 
the Cloud in a trusted manner, a device must have a well-
protected security subsystem where cryptographic algorithms 
can be executed in a secure way and where sensitive 
cryptographic keys can be securely handled and stored. Such a 
security subsystem is bootstrapped by a root of trust on the 
device. 
 
A root of trust can be defined as a minimal set of software, 
hardware and data that must be implicitly trusted in the 

platform – there is no software or hardware at a deeper level 
that can verify that the Root of Trust is authentic and 
unmodified [10]. It is therefore of utmost importance to make 
sure that the Root of Trust is implemented in a secure way. A 
secure boot mechanism can be used to make sure that the code 
running inside the security subsystem cannot be modified by 
an attacker. It requires a first boot stage to be implemented in 
(unmodifiable) ROM code, which verifies the integrity of a 
second stage boot loader before its execution. Integrity 
verification is typically done by computing a hash value of the 
second stage boot loader and verifying it with a hash value 
stored in ROM. The second stage boot loader again verifies 
the integrity of the next software layer before execution, and 
so on. To bring the flexibility into the secure boot mechanism 
to allow for software updates, typically the second stage boot 
loader (as well as subsequent stages of code) verifies the next 
stage based on a digital signature. Verification is done with a 
public key that is hard-coded as part of the running software 
stage to make sure it cannot be modified. The corresponding 
private key is used by the software provider to sign the 
software code image and updates of it.  
 
As explained above, authenticity and integrity of code can be 
achieved with an initial piece of unmodifiable ROM code and 
cryptographic checks of subsequent software stages. Note that 
confidentiality is not needed for this authenticity check. The 
ROM code provides a root of trust for integrity, even when the 
code is completely readable. However, for other purposes a 
security subsystem also needs to store secret keys, which must 
always be kept confidential. For example, keys that are used to 
encrypt sensitive data on the device or keys for authentication 
to the network need to be kept secure to prevent loss of 
sensitive data or cloning of devices (by means of copied 
authentication keys). Such sensitive secret keys cannot be 
stored as part of a code image, since we have to assume that 
an attacker can read out code from the device and reverse 
engineer it. A secure key storage mechanism is hence needed 
to protect such secret keys from attackers. In other words, 
besides a root of trust for integrity, we also need a root of trust 
for confidentiality. 
 
Implementation of a secure key storage mechanism on an IoT 
Device turns out to be quite a challenge in practice. Secure 
Elements are specialized integrated circuits, with a collection 
of security mechanisms, that are connected to a device’s main 
processor IC and can be used for this purpose. However, they 
are relatively expensive to add onto a low-cost IoT Device and 
introduce additional security issues, since the interface to such 
an external component requires additional protection [6]. 
Secure non-volatile memory (NVM) inside the device’s main 
IC sounds like a better approach, but also has several potential 
issues. For example, the use of one-time-programmable 
memory requires keys to be injected at an early stage in the 
production chain. This process implies that secret keys are 
handed over from device manufacturer to silicon 
manufacturer, and hence are revealed to different parties in the 
production chain. This creates undesired liabilities for both 
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parties, as the root keys are known outside the device’s 
security boundary. In the IoT this problem is enormously 
amplified by the sheer number of devices [4]. On low-end 
microcontroller devices, secure flash memory is often not 
available, and therefore not an option for storage of sensitive 
keys. 
 
A universal, flexible and low-cost secure key storage 
mechanism is hence needed to create a strong root of trust for 
confidentiality on a wide variety of IoT Devices. In the next 
subsections, we present a new and innovative secure key 
storage solution based on SRAM Physical Unclonable 
Function technology. 

C. Physical Unclonable Functions 
Physical Unclonable Functions (PUFs) are known as 
electronic design components that derive device-unique 
silicon properties, or silicon fingerprints, from integrated 
circuits (ICs). The tiny and uncontrollable variations in feature 
dimensions and doping concentrations lead to a unique 
threshold voltage for each transistor on a chip. Since even the 
manufacturer cannot control these exact variations for a 
specific device, the physical properties are de facto 
unclonable. These minute variations do not influence the 
intended operation of the integrated circuit. However, they can 
be detected with specific on-chip circuitry to form a device-
unique silicon fingerprint. The implementation of such 
measurement circuit is what is called a PUF circuit. There are 
several alternatives to implementing PUF circuits into an IC. 
They vary from comparing path delays and frequencies of 
free-running oscillators to measuring startup data from 
memory components [7]. A particularly promising PUF 
technology is based on SRAM memory. The SRAM PUF has 
excellent stability over time, temperature and supply voltage 
variations, and it provides the highest amounts of entropy [5]. 
Furthermore, it is available as a standard component in almost 
every IC. The latter aspect has important advantages in terms 
of deployment, testability and time to market. SRAM PUFs 
can be used in standard chips by software access to 
uninitialized SRAM memory at an early stage of the boot 
process. Hence, it is not necessary to integrate special PUF 
circuitry into the hardware of the chip when using SRAM PUF 
technology. 

1) SRAM PUF 
SRAM PUFs are based on the power-up values of SRAM 
cells. Every SRAM cell consists of two cross-coupled 
inverters. In a typical SRAM cell design, the inverters are 
designed to be nominally identical. However, due to the 
minute process variations that occur during manufacturing, the 
electrical properties of the cross-coupled inverters will be 
slightly out of balance. In particular, the threshold voltages of 
the transistors in the inverters will show some random 
variation. This minor mismatch gives each SRAM cell an 
inclination to power-up with either a logical 0 or a logical 1 on 
its output, which is determined by the stronger of the two 
inverters. Since this variation is random, on average 50% of 
the SRAM cells have 0 as their preferred startup state and 50% 

have 1. Note that SRAM memory is normally used by writing 
data values into the memory and reading back the written 
values at a later point in time. To use SRAM as a PUF, one 
simply reads out the memory contents of the SRAM before 
any data has been written into it. Reliability and uniqueness 
properties of SRAM PUF have been analyzed thoroughly over 
the past years over a wide range of technology nodes and 
under a wide variety of external conditions (e.g. voltage, 
temperature) [5]. 

D. PUF-based Key Storage 
PUFs can be used to reconstruct a device-unique 
cryptographic root key on the fly, without storing secret data 
in non-volatile memory. This root key is used by the security 
subsystem to encrypt (and integrity-protect) additional 
cryptographic keys that are used inside the subsystem. 
 
Since PUF responses are noisy, they cannot be used directly as 
a cryptographic key. To remove the noise and to extract 
sufficient entropy, a so-called Fuzzy Extractor is needed [1]. A 
Fuzzy Extractor or Helperdata Algorithm is a cryptographic 
primitive that turns PUF response data into a reliable 
cryptographic root key.  
 

 
Fig. 3: A Fuzzy Extractor operates in two basic modes: i) In 
Enrollment mode (steps 1-2) Helperdata is generated based on a 
measured SRAM PUF response, ii) In the Key Reconstruction mode 
(steps 3-5) the Helperdata is combined with a fresh SRAM PUF 
response for reconstructing the device-unique cryptographic root 
key. 

The Fuzzy Extractor (see Fig. 3) has two modes of operation: 
Enrollment and Key Reconstruction. 
In Enrollment mode, which is typically executed once over the 
lifetime of the chip, the Fuzzy Extractor reads out an SRAM 
PUF response and computes the so-called Helperdata that is 
then stored in (non-volatile) memory accessible to the chip 
[8]. 
 
Whenever the cryptographic root key is needed by the chip, 
the Fuzzy Extractor is used in the Key Reconstruction mode. 
In this mode a new SRAM PUF response is read out and 
Helperdata is applied to correct the noise. A hash function is 
subsequently applied to reconstruct the cryptographic root 
key. In this way the same key can be reconstructed under 
varying external conditions such as temperature and supply 
voltage.  



Important: by design, the Helperdata does not contain any 
information on the cryptographic key itself and it can therefore 
be safely stored in any kind of unprotected Non-Volatile 
Memory (NVM), on or off chip. At rest, when the device is 
powered down, no secret is ever present in memory, making it 
a cost-effective alternative to traditional anti-tamper features. 
 

1) Key Vault 
The root key that is securely reconstructed with the Fuzzy 
Extractor, can subsequently be used to encrypt and decrypt a 
next layer of keys. The root key never leaves the security 
context of the Fuzzy Extractor. In this way, a secure key vault 
is established. Keys that are encrypted with the root key, can 
be unlocked (decrypted) only on the device on which they 
were locked. Copying all non-volatile information (Helperdata 
and encrypted keys) from one chip to another does not copy 
the keys. Key vault functionality is one of the main use cases 
for PUF technology [12]. 

 

2) Root Key Provisioning 
Provisioning root keys into a chip is an essential step in 
establishing a root of trust anchored in hardware. Traditional 
key storage methods require the root keys to be injected at an 
early stage in the production chain. This process implies that 
secret keys are handed over from device manufacturer to 
silicon manufacturer, and hence are revealed to different 
parties in the production chain. This creates undesired 
liabilities for both parties as the root keys are known outside 
the device’s security boundary. In the IoT this problem is 
enormously amplified by the sheer number of devices. 
 
PUF-based secure key storage has the advantage that root keys 
do not have to be transferred or handled by the chip 
manufacturer or the device manufacturer. Every device can 
generate its own cryptographic root key, at any stage in the 
production process. 

 

3) Device Identity 
Besides using the root key for encryption/decryption of 
additional cryptographic keys that are needed by the system, it 
can also be used as a root key for further key derivation. With 
additional context data as input, other symmetric and 
asymmetric (elliptic curve) cryptographic keys can be derived. 
For example, to securely authenticate a device that is 
connecting to a Cloud service, or for unmanned machine-to-
machine connectivity, every single device must have a strong 
cryptographic identity. Such identity typically consists of an 
asymmetric key pair, composed of a public key and a private 
key.  
 
A cryptographic identity can be derived from the device-
unique root key via a key derivation mechanism. This is 
depicted in Fig. 4. The private key of the elliptic curve key 
pair never leaves the security boundary of the security 
subsystem. The public key, on the other hand, can be output 

and communicated to external entities. According to the well-
known Public Key Inrastructure (PKI) model, before the key 
pair can be used for device authentication a trusted entity 
needs to assert that the public key belongs in fact to a specific 
device (e.g. specific brand, model, serial number). This 
assertion is created in the form of a digital certificate. The 
trusted entity is typically the OEM who manufactures the 
device, although many variations in the supply chain setup are 
possible. To make the identity certificates globally verifiable, 
the OEM can use the services of a trusted Certificate 
Authority (CA) to sign the actual certificates. 
 

 

 
 

Fig. 4: PUF-based Identity provisioning. Reconstruction of 
cryptographic root key from Helperdata and SRAM PUF response 
(steps 1-3). Derivation of elliptic curve private/public key pair (step 
4). Export of device public key in Certificate Signing Request to CA 
(step 5). Device identity certificate generation (step 6). 

Devices are authenticated by sending their digital certificate, 
which includes the public key, to the verifying entity, e.g. the 
Cloud service or another device. The verifying party checks 
the contents of the certificate and verifies that it is correctly 
signed by a party it trusts (by a trusted public key certificate). 
The device public key that is in the certificate can then be used 
to verify the authenticity of the device by means of established 
authentication protocols. For example, a challenge-response 
protocol can be used in which the verifying party generates a 
random number and sends it to the device. The device 
generates a response value using its private key (after deriving 
it from the reconstructed PUF-based root key) by computing a 
digital signature on the received challenge. The verifying party 
receives the response and verifies that the signature is correct 
using the device public key part of the digital certificate.  

4) Advantages 
SRAM PUF technology forms a universal solution for the 
storage of cryptographic keys in the chips of IoT Devices. 
SRAM PUF technology provides hardware-rooted security 
that is enabled via software. When the device is powered 
down, no secrets are stored in memory, making cryptographic 
keys impossible to extract. In addition, SRAM PUF provides a 
high grade of flexibility all through the device supply chain. 
Every device can generate its own keys at any wanted point in 
the production chain. The entropy of these keys is determined 
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by randomness in the physics originating from minute and 
uncontrollable process variations in the silicon production 
process. This makes PUF-based implementations much more 
resilient than traditional key injection options. The flexibility 
of the SRAM PUF process results in cost reductions as 
external key management infrastructure is kept to a minimum. 

E. End-to-End Security Protocol 
In this subsection we focus on the end-to-end security protocol 
that is used by the IoT Device to set up secure connections 
with the Application Back-end and the Platform Back-end. 
The IoT Device will communicate with the Platform Back-end 
via the MQTT protocol [19] over a TLS connection [18]. The 
Platform Back-end runs an MQTT broker service. The 
Application Back-end also sets up a TLS connection with the 
Platform Back-end and communicates on the same MQTT 
topic as the IoT Devices use. This way, MQTT messages can 
be exchanged between IoT Devices and Application Back-
end. By means of an end-to-end security protocol, messages 
are encrypted end-to-end between IoT Device and Application 
Back-end. The Platform Back-end is not able to read the 
contents or alter the exchanged messages between IoT Device 
and Platform Back-end (Fig. 5). 
 

 

 
Fig. 5: End-to-end security from Device Gateway to Application Back-
end Gateway, on top of individual MQTT/TLS connections with the 
Platform Back-end service. 

1) Setup Phase (Manufacturing and Initial 
Commissioning) 

The Platform Back-end needs to trust the CA that is going to 
sign the device identity certificates, and hence knows its 
public key. We assume that this CA public key certificate is 
installed in the certificate store of the Platform Back-end 
servers. Similarly, we assume that the CA public key 
certificate is part of the Application Gateway software. We 
furthermore assume that the Platform Back-end as well as 
every Application Gateway has its own asymmetric key pair 
and public key certificate issued by the CA.  
 
During manufacturing of the IoT Devices, the “Device 
Gateway” software is installed. It includes the software stack 
for application and connectivity and useful configuration data 
(e.g. MQTT topics) for the IoT Device to be ready for 
connection with Platform Backend and start 
receiving/transmitting packets. As part of the security stack it 
contains Fuzzy Extractor software that is configured to access 
uninitialized SRAM on the device. Furthermore, the Device 
Gateway contains the CA public key certificate for 
verification of certificates used in the system. 
 

During manufacturing, the IoT Device executes the Fuzzy 
Extractor enrollment step and stores the generated Helperdata 
in its non-volatile memory (NVM). An elliptic curve key pair 
is derived, and the public key is used to generate a certificate 
signing request (CSR). The manufacturing environment is 
trusted for presenting the correct CSR (including device public 
key and device ID value) to the CA, which in turn generates a 
valid device identity certificate. The identity certificate is 
stored in the device’s Non-Volatile memory (NVM). The 
device ID is printed on a sticker (e.g. in the form of a QR 
code) to enable easy scanning of the ID in the application 
commissioning phase. 

2) Application Commissioning 
An installation engineer of the Application Provider scans the 
device ID on the sticker of the IoT Device (with a specific 
scanner device or with a smart-phone app that is connected to 
the servers of the Application Back-end) and submits it to the 
Application Back-end. The Application Gateway submits a 
connection request, using the scanned device ID, to the 
Platform Back-end. The Platform Back-end decides whether 
the Device can be registered to the intended Application Back-
end. If the connection is allowed (i.e. if the device is not 
registered with other Application Back-ends), the Platform 
Back-end manages the exchange of the following certificates:  

1. Application Gateway certificate is sent to IoT Device 
2. IoT Device certificate is sent to the Application 

Gateway 
 
From then on, all communication from IoT Device is 
forwarded to the registered Application Gateway and vice 
versa.  

3) In-Field Operation 
The IoT Device will verify the certificate of the Application 
Back-end server it connects to as part of setting up the TLS 
connection, using the CA public key that is installed as part of 
the Device Gateway software. Similarly, the Application 
Back-end server checks the IoT Device’s identity certificate as 
part of the TLS client authentication step. As a result, both 
peers can agree on a common key (e.g. as the result of a 
regular TLS handshake). This provides confidentiality, data 
authentication and data integrity to the communication link 
through which data packets are exchanged. A similar 
procedure will be used for the secure communication between 
Application Gateway and Platform Back-end. 
 
The Platform Back-end assures that MQTT messages between 
the IoT Device Gateway and the Application Back-end 
Gateway of the connected Application are exchanged. A 
Diffie-Hellman key agreement protocol is run between IoT 
Device Gateway and Application Back-end Gateway. Every 
peer, based on authentication credentials (other peer’s 
validated certificate and its own private key), generates the 
same master key. From this master key, in combination with a 
session identifier, two session keys (SAK: Session 
Authentication Key and SEK: Session Encryption Key) are 
derived using a Key Derivation Function. Both peers end up 



with the same session keys for secure exchange of application 
data, if they are working with the same session ID. Note that 
session IDs and keys can be updated regularly (e.g. once per 
24 hours or after a predetermined number of messages 
exchanged). 
 
The Session Encryption Key is used to encrypt messages that 
are exchanged between IoT Device and Application Back-end. 
The Session Authentication Key is used to sign those 
messages to prevent alteration of the messages. A message 
counter value is increased for every every new message 
exchanged and used as part of the authenticated value to 
prevent replay attacks. The verifier needs to check that 
messages within one session are received in increasing order. 

4) Decommissioning 
To decommission a device, the installation engineer scans the 
device ID on the sticker of the IoT Device and indicates on his 
scanner device that the device needs to be decommissioned. 
The Application Back-end that is connected to the scanner 
device informs the Application Gateway to submit a 
decommissioning request to the Platform Back-end. The 
Platform Back-end removes the device ID from its routing 
table and triggers the Device Gateway and the Application 
Gateway to delete each other’s certificates. A successfully 
decommissioned device can be re-commissioned to a (new) 
Cloud application. 

5) End of Life 
Non-functioning or compromised devices can be taken out of 
service by the Platform Provider by blacklisting their 
corresponding device IDs. On the device side it is possible to 
remove the device’s identity keys. This is effectively achieved 
by clearing the device’s NVM. Once a device’s Helperdata is 
removed from the NVM, it will not be able to reproduce the 
same cryptographic root keys and identity keys anymore. 

IV. PROOF OF CONCEPT 
A demonstrator implementation of the end-to-end security 
protocol has been built as part of the SEMIO project, for 
which Intrinsic ID and Technolution have received a Small 
Business Innovation Research Programme (SBIR) award from 
the Dutch government.  
 

 

 
 

Fig. 6: Demo setup with STM32 IoT Device prototype 

As a proof of concept for the IoT Device, we used an ST 
Microelectronics STM32L476 development kit with a 
microcontroller based on an Arm Cortex M4 processor (Fig. 
6). The development kit can connect to the Internet via WiFi 
and integrates a temperature sensor. The manufacturing 
enrollment step and certificate generation step are 
implemented on a PC. This PC also registers a device to the 
Amazon AWS Cloud service (acting as the Platform Back-end 
service) after enrollment. The application gateway is 
implemented as a service running on the Amazon AWS 
platform.  
 
The PUF-based security system that is implemented as part of 
the Device Gateway code uses 1 KB uninitialized SRAM 
memory to extract a 256-bit device-unique root key. The 
Helperdata (about 1KB in size) is stored in the Flash memory 
of the STM device. The asymmetric cryptography is 
implemented based on NIST P-256 elliptic curves. The 
implementation of the proof of concept Device Gateway 
(including Fuzzy Extractor, TLS library, TCP/IP stack and 
drivers) has a code size of less than 180 kilobytes.  
 
Fig. 7 shows a screenshot of proof-of-concept Platform Back-
end implementation on the Amazon AWS Cloud when the IoT 
Device is transmitting sensor data to the Application Back-
end. The Device Management Platform handles encrypted 
data, which can only be decrypted by the Application Back-
end.  
 
The actual temperature data can only be decrypted by the 
Application Back-end, as can be seen in the screenshot of the 
proof-of-concept Application Back-end in Fig. 8. 
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Fig. 7: Platform Back-end  view of secure data exchange between IoT Device and Application Back-end. All exchanged MQTT messages are 
encrypted. 

 
 

 
 
Fig. 8: Decrypted data visible on Application Back-end 



V. CONCLUSIONS 
In this work we have introduced the concept of a secure device 
management platform for IoT-connected devices in the critical 
infrastructure. It enables Application Providers to easily 
manage a large number of IoT Devices in a secure and 
scalable way. An end-to-end security protocol assures that 
messages communicated between IoT Device and Application 
Back-end cannot be read or altered by the device management 
platform itself or attackers in the network. In other words, the 
device management platform manages the connections 
between IoT Devices and Backend Applications, without 
being able to intercept or modify the exchanged messages over 
these connections. Security on the device side is bootstrapped 
with an innovative secure key storage solution based on 
SRAM Physical Unclonable Functions. This technology 
enables every chip to generate and securely store its own 
digital identity in the form of a cryptographic key pair that is 
derived from its unique silicon properties. No costly key-
injection step during silicon manufacturing or external secure 
element chip are needed. The flexibility of the SRAM PUF 
solution enables the roll-out of a universal embedded security 
approach that scales to a wide variety of IoT Devices.  
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