
RESCURE: A security solution for IoT life cycle

Georgios Selimis
Rui Wang
Roel Maes

Geert-Jan Schrijen
georgios.selimis@intrinsic-id.com

Intrinsic ID
Eindhoven, Netherlands

Mario Münzer
Stefan Ilić

muenzer@technikon.com
Technikon Forschungs- und
Planungsgesellschaft mbH

Villach, Austria

Frans M.J. Willems
Lieneke Kusters

F.M.J.Willems@tue.nl
C.J.Kusters@tue.nl

Eindhoven University of
Technology

Eindhoven, Netherlands

ABSTRACT

We present RESCURE, a security solution built on software,
which retrofits Internet of Things (IoT) devices to secure
ones. RESCURE exploits the entropy originating from the
random variations of silicon (transistors) during manufac-
turing and generates a unique unforgeable root key and an
identity per device. In this way, root key and identity are
inseparable from the IoT hardware. To achieve lifetime reli-
ability (reproducibility) and security (randomness) for root
key and identity, we apply error correcting and randomness
amplification algorithms to the signals derived from silicon.
RESCURE supports certificates which are able to prove the
device identity and authenticity. RESCURE supports multi-
ple keys derivation (private keys or private/public key pairs)
and End-to-End security. In this way an IoT device is able
to communicate securely and independently with multiple
actors (e.g., Service Providers). It supports secure storage so
it is able to encrypt sensitive data such as application keys,
sensitive data or software Intellectual Properties (IP). Finally,
the entire device software is protected by secure boot and
secure software update mechanisms allowing for malware-free
software execution and renewable security and features. RES-
CURE has been prototyped on an ST32L4 device and its
performance is presented across real use case scenarios cover-
ing the entire life cycle of the device. It is a low-cost solution
for all the devices manufacturers that want to achieve high
standard security without redesigning the hardware of their
IoT product.

KEYWORDS

IoT, lifecycle security, authentication, end-to-end, IoT to
cloud, IP protection, unforgeable keys

1 INTRODUCTION

As the IoT technology is expanding, there is more need for
strong authentication and security on Machine-to-Machine
(M2M) deployments, where no user is present. The main
reasons are: a) The consequences of any breach can be severe
as these devices are often used in safety critical applications.
In addition, due to connectivity, the compromise of a single
device can affect a large system; b) the number of connected
devices is growing and this means that more and more un-
guarded targets with associated value exist. A number of
those machines are connected over the Internet as well, which
constitutes an open door for remote attacks; c) machines are

autonomously running out in the field 24/7. So, it is much
harder to detect an attack quickly and even harder (and
costly) to physically access the devices to repair them; and d)
finally while in the mobile and computer world, generally the
user is trusted, in M2M communication you cannot always
trust the user (e.g. smart meter) and the device is often
exposed to physical hardware attacks, even on the level of
individual components and internal interfaces.

IoT devices are powered by low-cost micro controller chips
made by Semiconductor Manufacturers such as Renesas,
STMicroelectronics, NXP, Silicon Labs etc. Next, IoT Origi-
nal Equipment Manufacturers (OEMs), choose a chip based
on price and features, and build a sensor, an actuator, etc.
OEMs sell these devices to customers such as Service Providers
(e.g. energy providers) who place them in the field. The prob-
lem with this process is that security spans across all the
parties but often no one party has any incentive, expertise, or
even ability to take care of the security of the entire IoT life-
cycle. Furthermore, component electronics on IoT are based
on low-end chips, which are small, inexpensive, and thus
have limited memory and processing powers. Only high-end
chips (such as the ones used in smartphones) are protected
sufficiently, because they can support existing heavy-weight
security solutions. The result is that hundreds of millions
of IoT devices have been sitting on the Internet, unpatched
and insecure, for the last five to ten years, which hackers
and criminals started to notice. This needs to be fixed before
another massive attack strikes urban intelligent transporta-
tion systems, smart grids or other critical infrastructure with
severe consequences.

Strategic Principles for Securing the IoT published by the
US Department of Homeland Security provides a crucial and
accurate piece of guidance “use hardware that incorporates
security features to strengthen the protection and integrity
of the device” [43]. In line with this guideline, RESCURE
extracts entropy from the transistors of Static Random-Access
Memory (SRAM) to derive the root key of the device. No
programming of the root key is required from outside (a time-
consuming, expensive and security critical task), and the key
is generated internally from the entropy of the device itself.
Our approach is scalable to all IoT devices, since SRAM
is a component found in all micro controllers even the low-
cost ones. As a result, RESCURE, a software-based security
solution, is able to retrofit those millions of IoT devices that
are installed in the field without requiring a redesign of the

products. RESCURE mitigates the urgent security issues as
they have been reported by industry and open community
organizations such as Common Vulnerabilities and Exposures
(CVE) [27], IoT security findings of OWASP website [44],
IoT Eclipse Developers 2019 survey on the most common IoT
technologies and security technologies [17], IBM’s top IoT
Security challenges [14], Microsoft’s publication on the seven
properties of highly secure devices [26].

In the rest of the paper:

• We give an overview of the security requirements, chal-
lenges and threats in the IoT life cycle, in Section 2.

• We present the RESCURE prototype, which retrofits
an ST32L4 device to a secure IoT node. In the proto-
type we have implemented secure root key generation
through Static random-access memory Physical Un-
clonable Function (SRAM PUF) technology, secure
communication over the cloud using end-to-end encryp-
tion, and secure over-the-air update. The prototype
and its functionalities are described in Section 3.

• The root key is underlying all used cryptographic al-
gorithms. Therefore, it is essential that the root key
generation is secure, and we study it in more depth
in Section 4. First, we study statistics of the SRAM
PUF component on the ST32L4 device, and show that
indeed the generated key is secure and reliable. Second,
we focus on the lifecycle of an IoT node, and study
security challenges and potential improvements of root
key generation.

• We conclude with a discussion on the results in Sec-
tion 5.

2 REQUIREMENTS AND CHALLENGES

In this section, we present the main security objectives and
threats during IoT device life cycle.

2.1 Manufacturing Phase

2.1.1 Digital identity set-up: The Internet of things (IoT) is
a system of interrelated computing devices, mechanical and
digital machines provided with unique identifier (UIDs) and
the ability to transfer data over a network without requiring
human-to-human or human-to-computer interaction [52]. One
of the first tasks that should take place during the manufac-
turing phase is to set-up a unique identifier or identity for
the IoT device. In this way every device will be recognizable
from outside and able to exchange information with other
devices and services. IoT large scale infrastructures use for
device authentication the Public Key Infrastructure (PKI).
PKI comes with a digital identity which is made up of two
components, a private cryptographic key which stays in the
device (read and write protected) and a digital certificate
which contains the corresponding public key and device UID
and it is signed by a certificate authority. In this phase, secu-
rity challenges include: (1) Every device needs an unforgaeble
digital identity (see recent attacks Table 1: Itron smart me-
ter, CVE-2020-9434, CVE-2018-16546). (2) The private key

should be stored securely (read/write protected) in the sys-
tem, (see recent attack Table 1: CVE-2019-17391).(3) The
private key should be programmed into the device in a secure
environment without being exposed outside. (See Intrinsic ID
white paper on the drawbacks of traditional key programming
methods [15]).

2.1.2 Programming the IoT device to be ready for operations:
The second important step during manufacturing is the de-
velopment and the integration of the IoT software which will
be placed in IoT device. The embedded software library will
be stored in a non-volatile flash memory. Software contains
low level firmware and drivers, networking and connectiv-
ity stacks, connectivity settings, server and Service Provider
certificates, operating system, cryptographic algorithms and
protocols. In this phase security challenges include: (1) An-
alyze the IoT security assets that require protection. For
example, the binary data of the embedded software library
requires write-protection. (2) Figure out the perimeter ex-
posures which are dependent on the platform architecture
such as debug interfaces, physical attack vulnerabilities such
as side-channel attacks and fault injection attacks. (3) Intro-
duce protection domains if the MCU supports it. For example,
TrustZone from ARM [6]. TrustZone starts at the hardware
level by creating two environments that can run simultane-
ously on a single core: a trusted area and a non-trusted area.
Cryptographic operations are executed in the trusted area,
and software in the nontrusted area can be completely pre-
vented from accessing hardware that is supposed to be used
in the trusted area. (4) Implement attack countermeasures.
For instance a very important countermeasure is the secure
boot mechanism for authenticated and integrity protected
code execution. In this case, proper secure design is very
important because secure bootloaders can be bypassed as it
has been discovered recently in some products (See Table 1:
CVE-2019-2267, CVE-2019-5478).

2.2 Operations Phase

2.2.1 Device authentication. In this Phase the device is al-
ready in the operations field. As IoT technology is quickly
expanding in applications and volume, there is an increasing
need for strong, scalable and cost-effective authentication
between devices: M2M authentication. There are several rea-
sons for this urgent call to action. First, the data in question
is highly sensitive and private in nature. Second, M2M com-
munication cannot depend on the human being available to
authenticate 24/7; the device should operate seamlessly to the
user and should authenticate itself without human actions be-
fore critical procedures such as secure software updates. And
finally, passwords or other authentication mechanisms based
on shared secrets can be stolen or even forged by the device
user. Some of the recent reported attacks include: missing au-
thentication (see Table 1: CVE-2020-6769, CVE-2018-14786)
or improper authentication (see Table 1: CVE-2019-11220,
CVE-2019-13523).These attacks have been reported over the
last months regarding some products in the market.

RESCURE: A security solution for IoT life cycle

2.2.2 IoT to the Service Provider communication: Nowadays,
the easiest, low-cost and scalable way to achieve connectivity
within large scale IoT deployments is to use cloud technology.
Popular cloud Service Providers such as Amazon [2], Mi-
crosoft [25], Google [11] come with the corresponding cloud
platforms AWS IoT, IoT Azure, and Google cloud IoT which
enable devices to get connected to Service Providers (or to
other devices) using messaging protocols such as Message
Queuing Telemetry Transport (MQTT). So cloud plays the
role of an intermediate MQTT broker supporting message
exchanging between the MQTT clients namely IoT and Ser-
vice Providers. From the security point of view this require
the establishment of a secure connection from the IoT device
to the cloud and a secure connection from the cloud to the
Service Provider. In this way, an IoT deployment scenario in-
cludes multiple secure connections from IoT devices to cloud
and a secure connection from cloud to each Service Provider.
Each connection is secured using Transport Layer Security
(TLS) [51] which provides privacy and data integrity between
the two connection participants (IoT to cloud, cloud to Ser-
vice Provider). Both participants use certificates to verify
each other’s identity (authenticity). This method prevents
man-in-the-middle attacks and the sender can be certain that
the receiver gets exactly the same data as the sender sent
(and vice versa). Security challenges include: TLS supports
security from IoT to cloud and from cloud to Service Provider
however data is passing through the cloud unecrypted. So
the Cloud service has access to data and no End-to-End
(E2E) security from IoT to Service Provider is supported.
Nowadays, there is a lot of discussion about the validity of
the E2E security that some Service Providers claim [49].

2.2.3 Intellectual Property (IP) Protection: State of the art
of IoT software includes sophisticated algorithms for signal
processing, artificial intelligence and data analysis. These
algorithms should be protected otherwise competitors have
access to software design and implementation. To avoid copy-
ing, IP encryption should be taken place. Security challenges
include: (1) Managing the cryptographic keys associated with
the IP protection. (2) There were some reported attacks
on the IP Protection with respect to some MCUs with “IP
Protection features” (see Table 1: CVE-2019-14239, CVE-
2018-14236). These vulnerabilities after identification have
been resolved.

2.2.4 Secure Software update: Software updates offer plenty
of benefits. These might include repairing security holes that
have been discovered and fixing or removing bugs. Software
updates often include software patches. They cover the secu-
rity holes to keep hackers out. Updates can add new features
to IoT devices and remove outdated ones. Security and system
challenges include: (1) Providing software updates for mul-
tiple devices and managing several software versions across
multiple IoT devices. (2) Provide the new software version
in a secure and authenticated way making sure that the con-
fidentiality of the software is not exposed and the software
comes from the legitimate source. See related attacks Table

1: CVE-2020-9544, CVE-2019-5995, CVE-2019-5160.(3) Pro-
viding anti-rollback protection where the goal is to prevent
downgrading of the device to an older version of its software,
which has been deprecated due to security concerns.

2.3 End of IoT Life

Finally the IoT device should be removed from the operations.
This can happen due to several reasons including: the device
approaches the end of its life so it should be disposed or
replaced, the device should be associated with another owner
(e.g. Service Provider) or the device is under attack and
should be removed from the network. Challenges include:

(1) Remove the IoT device from the operation field in an
easy way.

(2) Transfer IoT device from the old owner to a new one
without exposing sensitive information of the previous
owner and vice versa.

(3) When the device detects a security breach due to an at-
tack, it should minimize the damage, e.g., by informing
the owner, and possible recovering from the attack.

3 OUR SOLUTION

In this Section we present first the architecture of our solu-
tion, next the implementation details of the proof-of-concept,
the used third-party software and finally the performance
analysis.

3.1 Security architecture

Our architecture includes three phases, the manufacturing
phase, the operations phase and the end of life time phase.
The main participants in our scheme are the following:

OEM company: This is the company that assembles all
the Integrated circuits (ICs) on a PCB, develops the drivers
and software and builds the IoT Device.

IoT Device: It is the product that is produced by OEMs and
it is provided to Service Provider via distributors channels.

Cloud: It is a commercial cloud service, in our case AWS
Amazon, which acts as a messaging broker (MQTT) between
IoT devices and other participants such as Service Providers
(e.g., energy providers, public lighting Service Provider).

Service Provider: It is connected to Cloud platform and it
is interested in the data coming from IoT but also can send
control instructions to IoT devices. Part of Service Provider
is the Secure Software updates server which provides new
updates to the IoT device via the cloud platform and a Local
Certificate Authority (LocalCA) which signs the IoT Device
Certificates.

Next, in Figure 1 we present the procedures that are tak-
ing place during the life cycle of the IoT device and the
interactions among the participants. We introduce also a
pre-manufacturing Phase which refers to a priori information
that should be exchanged between the Service Provider and
the cloud.

(0) Pre-manufacturing phase. Service Provider, who is go-
ing to deploy the IoT Devices, trusts or operates a

Local Certificate Authority (LocalCA) which is respon-
sible for signing the certificate requests derived from
the IoT Devices. In order for an IoT Device to be au-
thenticated by a Cloud, the Cloud should trust the
LocalCA. For this reason, the Root Certificate of a
Local CA is provided and installed in the Cloud. In
the same way, in order an IoT Device to trust the
Cloud, a Cloud provides to a Service Provider its Root
Certificate. Later on, the Service Provider will install
the CloudCA Root Certificate to an IoT Device.

(1) Manufacturing phase. OEM is assembling the IoT De-
vice and puts together low level firmware, drivers, oper-
ating system and software application. It delivers (sells)
the IoT Device product to the Service Provider.

(2) Service Provider configures the IoT device software
based on the application requirements. It sets the con-
figuration settings (e.g. MQTT topic, port number) and
corresponding certificates (e.g. Cloud Root certificate,
Service Provider certificate) for connectivity to Cloud
and Service Provider. Moreover, it provisions secret
keys which are stored encrypted by the root device key.

(3) Next, it derives from an IoT Device a certificate request
[50] which is sent to a LocalCA. The certificate request
derives from the device private and pubic key.

(4) Certificate Signing Request is signed by the LocalCA
and the resulting certificate is sent back to the IoT
Device. In this way the digital identity of the device has
been generated and will be used for the Over-The-Air
(OTA) software update.

(5) IoT Device Certificate is written back to the device. A
Service Provider provides the public key of the software
updates server in the IoT Device bootloader region.
Finally it signs the software image by the secret key of
the Software updates server and writes it back to the
IoT a software image together with the signature. The
memory of IoT device where the bootloader is installed
is locked in order the data integrity of the bootloader
to be protected.

(6) Start of operations in the field. IoT device sets up an
MQTT/TLS connection with Cloud.

(7) Service provider set ups an MQTT/TLS connection
with Cloud.

(8) Software Updates Server set ups an MQTT/TLS con-
nection with Cloud.

(9) E2E connection is set-up between IoT device and Ser-
vice Provider.

(10) In the case of software updates, the Software Updates
server encrypts and signs the data on top of the MQT-
T/TLS connections.

(11) In the case of end of IoT Device life. A Service Provider
sends and instruction to IoT device for disconnection
from the network and operation termination.

3.2 Set-up description

3.2.1 Our core component SRAM PUF . RESCURE main
goal is the retrofitting the security of IoT devices using a

low-cost solution. To accomplish this goal without requiring
additional hardware the selected approach is based on the
SRAM PUF technology [23]. In this way SRAM start-up data
acts as a “silicon fingerprint” for the IoT micro processor.
The slight uncontrollable variations in SRAM transistors
created during manufacturing lead to a unique initial SRAM
state. The SRAM PUF derives this device-unique property
providing us with an unclonable and root-of-trust. Using
this “silicon fingerprint” we derive the device root key. This
system is called SRAM PUF. As a proof of concept, we
implemented an SRAM PUF based solution and created a
scenario showcasing IoT to cloud TLS deployment, OTA
(over-the-air) update and E2E encryption. The security of
the root key is essential for security of the whole system.
This root key is not stored on the device, but instead it is
generated only at the moment that you need it. The two
major advantages of using key generation based on SRAM
PUF are a) low cost - instead of regular expensive secure key
storage, no costly protected memory is required, and b) high
security - no root key is programmed from the outside world
during the manufacturing phase, rather the internal entropy
of the silicon generates the root key so the root key is never
exposed outside.

3.2.2 SRAM PUF for IoT to cloud. The first usage of SRAM
PUF root key is a runtime generation of an eliptic-curve
crypto keypair using secp256r1 [45] functionality for the IoT
device MQTT/TLS connection to the cloud. Using this data,
we generate an appropriate device certificate and register it
with the cloud provider (in our case Amazon). This enables
us to tie the keypair, and therefore the SRAM PUF root
key, with a Thing ID, a unique identifier with whom Amazon
identifies the device. Attempts to clone the digital identity
on a different device will fail as a different key would be
generated. Also, as added benefit the root key enables us
to deterministically generate keypairs at runtime, avoiding
the possibility of their extraction from flash and the need for
complicated key protection schemes. The key generation itself
is based on seeding HMAC-DRBG (hash-based message au-
thentication code - deterministic random bit generator) using
root key and using it as an input to SECP256R1 generation.

3.2.3 SRAM PUF for E2E security. As we mentioned in Sec-
tion 2.2.2 E2E security is required on top of MQTT. The
keypair required for E2E encryption between an IoT device
and a Service Provider is also generated in the same man-
ner from SRAM PUF. The generated public keys can be
extracted and exchanged securely during initial device de-
ployment. The E2E encryption establishes a second layer on
top of TLS connection with cloud preventing it from access-
ing plaintext data. Cloud MQTT broker will still be able
to route messages but only the Service Provider, based on
shared secret generated using ECDH, can decrypt them.

3.2.4 SRAM PUF for OTA update key storage. Lastly, the
root key is also used during the OTA update. As a security
measure, new application images during transit and storage
at Amazon S3 servers in RESCURE are encrypted using

RESCURE: A security solution for IoT life cycle

Figure 1: Security Architecture

ChaCha20 symmetric cipher [28]. To prevent an attacker
from obtaining this symmetric key, we encrypt it using the
root key. In all cases in which it is used, the root key is
immediately zeroed out after it is no longer needed.

3.2.5 Proof-of-concept. The proof-of-concept solution is im-
plemented on the STMicroelectronics B-L475E-IOT01A [46]
development kit. For the main MCU (MicroController Unit)
kit is using STM32L475VG [48] which is based on the ARM
Cortex M4 processor. The board STM32L475VG has 1 MB
of flash split in two banks and 128 KB of SRAM including
32 KB with hardware parity. As a development kit, B-L475E-
IOT01A allows rapid prototyping and provides a variety
of connectivity options and sensors. Also for the purpose
of software security manager, the selected kit is a suitable
target for security retrofit as it has no advanced hardware

security features such as Arm TrustZone. In our solution,
B-L475E-IOT01A plays the role of the cloud-connected IoT
Node sending periodic sensor data to the server. The main
software components running on the development kit are 1)
secure bootloader and 2) security-enhanced application for
collection of sensor data.

The bootloader is stored in the write-protected area of
flash alongside the public key of a developer ensuring their
immutability. On each boot, the bootloader selects an active
application image and verifies its integrity using a signature
and hardcoded public key. The signing procedure is ECDSA-
with-SHA256 on the secp256r1 curve and the signature is
verified with the hard-coded public key. This setup provides a
guarantee that only applications provided by a verified devel-
oper can run on the kit. To support OTA update and in case

of accidental corruption of image during transfer bootloader
also supports rollback to previously running image.

The main application running on the kit is based on Ama-
zon FreeRTOS [3]. The FreeRTOS is a real-time operating
system kernel, designed specifically for microcontrollers with
primary goals to be robust, easy to use and to have a small
memory footprint. The main functionality, collection, and
reporting of sensor data is implemented as a FreeRTOS task,
a separate program in the context of FreeRTOS. Gathered
data is sent to the Amazon MQTT broker on a predeter-
mined topic for further processing. To prevent the possibility
of network traffic being monitored instead of running MQTT
directly on top of TCP we are using it with TLS (Transport
Layer Security). The sensor data is added as plaintext to
MQTT messages. The key part of the demonstrator, and
main non-functional requirement - security, is based on usage
of SRAM PUF derived root key. To get consistent root key
generation we are using a fuzzy extractor based on concate-
nation of BCH code (15,7,5) and repetition code (7,1,7) [10]
(more details in Section 4). In the implemented demo, the
usage of the key is threefold: 1) runtime generation of the
private key used to establish communication with AWS 2)
generation of key-pair used to establish E2E communication
and 3) decryption of symmetric ChaCha20 key used in OTA
update procedure.

To better present RESCURE software security solution, we
have also developed two GUI applications. The first applica-
tion enables the user to perform initial software deployment
on the B-L475E-IOT01A and create an OTA update. The
second application enables the monitoring of device outputs.
It presents a unified view of serial device output, encrypted
and decrypted MQTT traffic to the selected topic. Both
applications are developed using C# and WPF (Windows
Presentation Foundation). Finally, to avoid implementation
of existing software solutions and increase the speed of devel-
opment, demonstrator uses a number of existing libraries:

• tinycrypt [16]: To achieve the minimal size of the boot-
loader, we selected an open-source cryptographic li-
brary tinycrypt. By providing only a minimal set of
primitives and reducing abstraction this library pro-
vides significant space-saving.

• mbedtls [7]: In the main application, implemented in
FreeRTOS,we relay on mbedtls for the cryptographic
needs. The mbedtls is also an open-source crypto-
graphic library.

• boto3 [8]: To provide easier AWS (Amazon Web Ser-
vices) OTA update creation and partially automate
the process we are using boto3. The boto3 is an open-
source Python Software Development Kit (SDK) for
managing and configuring AWS.

• AWS IoT SDK for Python v2 [4]: It is a Python SDK
built around a collection of C libraries. We are using
this SDK to create MQTT client enabling us monitoring
of incoming messages on selected topics.

• STM32 ST-LINK Utility [47]: A software interface
for programming STM32 microcontrollers. Integrating

STM32 ST-LINK Utility CLI, as part of GUI, helped
us automate the process of programming devices.

3.3 Proof-of-concept performance analysis

Security commonly requires trade-offs in processing time,
code size or usability. As the RESCURE software security
solution targets resource-constrained devices these additional
costs had to be carefully considered during development.

Compared to the default Amazon MQTT demo applica-
tion, code size increase due to RESCURE and additional
functionality required for demonstration purpose is 90 KB.
This is a notable increase, considering the original MQTT
application size of 300 KB, but it adds otherwise unavailable
security protection to the device. Additionally, for PUF, we
also need to reserve 1 KB of SRAM.

The trade-off in case of encrypted OTA update is additional
processing time spent on decryption as there is no increase
in the size of downloaded image blocks. The average time
for decryption and storing 1024 KB block using ChaCha20
on B-L475E-IOT01A is 28.9 ms while the time of storing an
unencrypted block of the same size on the flash is 23.3 ms.
For a 400 KB application, image decryption would add only
2.2 seconds of extra processing time, a negligible increase
considering the frequency of updates.

The scalability impact is visible only in the deployment
phase as on each device, using SRAM PUF, we need to gen-
erate a unique identity and corresponding certificate derived
from it. This procedure adds extra steps compared to de-
ploying a single application image to all devices. However, a
well-setup PKI should ensure that this procedure is fully scal-
able to deployments with a large and diverse number of IoT
devices. Overall, we see that RESCURE incurs some penal-
ties from performance/code size/scalability perspective but
that they are kept low, especially considering that the imple-
mented solution is a proof-of-concept, making the proposed
approach usable in a variety of scenarios.

4 RESCURE ROOT KEY GENERATION

In the following, we first explain what the challenges of root
key generation are. Then, we discuss the scheme that is used
in the RESCURE security architecture, and present the sta-
tistics of the used hardware. We also derive the corresponding
security and reliability of the root key generation. Finally, we
discuss two scenarios w.r.t. the End of IoT life phase of an
IoT node. Both scenarios require a re-generation of the root
key. We explain under which conditions the re-generation can
be performed securely, and what the length of the new key
can be.

4.1 Challenges of root key generation

The SRAM PUF observations are unique, unobservable for
an attacker, and can be used as a device identifier [12, 13].
However, the observations are also slightly noisy, i.e., re-
peated observations of the same SRAM PUF are similar but
not exactly the same. Note that the generated key should

RESCURE: A security solution for IoT life cycle

be unpredictable (uniformly distributed), and reliably recon-
structable during the operation phase. So-called helper data
schemes are used to ensure that the key meets both require-
ments, see, e.g., [9, 12]. These helper data schemes construct
a so-called helper data which is used to reconstruct the key
from noisy SRAM PUF observations. This helper data must
be stored on the device, and it is considered as public infor-
mation that may be accessed by an attacker. Therefore, the
helper data by itself should not reveal any information about
the key.

We evaluate performance of the helper data scheme in
terms of security, reliability, and efficiency. First of all, the
scheme should be secure in a sense that an attacker cannot
obtain any information about the key, even when he observes
the helper data. Second, the reconstruction of the key should
be reliable, i.e., the probability of a failed reconstruction
(due to noise in the SRAM PUF observations) should be
below a given threshold. Third, the efficiency of the scheme
is measured in terms of secret-key rate, which is the number
of derived key bits per SRAM cell.

4.2 Performance of root key generation

Since we retrofit an existing IoT node, the ST32L4 device,
we have to use the SRAM which is already available on
the device. In this section, we analyze the statistics of the
corresponding SRAM PUF. We evaluate the entropy and
reliability of the observations and show that 1KB SRAM is
sufficient to derive an 256-bit key.

In order to turn noisy SRAM initial state into a reliable
and device-unique root key, the helper data scheme is applied
on top of SRAM PUF. We have implemented a very basic
error correction code scheme, based on concatenation of BCH
code (15,7,5) and repetition code (7,1) which can regenerate
the root key with the error rate of 10−7. Further optimizations
where beyond the scope of this work.

4.2.1 Reliability of SRAM PUF. The helper data scheme
should be able to regenerate during the “Reconstruction”
phase (device in the field) the response obtained during
the “Enrollment” which took place in the manufacturing
phase. The amount of bit errors (PUF noise) between these
two responses that can be corrected depends on the error
correction code scheme.

We have measured the uninitialized SRAM observed 5%
noise under room conditions. Based on the implemented error
correction code with 5% noise, our helper data scheme can
regenerate the root key with the error rate of 10−7.

4.2.2 Entropy of SRAM PUF. The SRAM PUF response
should be unpredictable for the security purpose. And the
feature is quantized by the entropy. In order to estimate
the entropy of the SRAM PUF on the target device, two
methods are proposed. The context-tree weighting (CTW)
compression algorithm is applied to estimate the upper bound
of entropy, while min-entropy estimates the lower bound [53].
According to the same memory dump dataset as we use for
reliability, the CTW compression gives the average entropy of

0 .05 .1 .15 .2 .25 .3
0

0.1

0.2

0.3

0.4

0.5

𝑃𝑒

#
b
it
s
2n

d
k
ey

/
#

b
it
s
1s

t
k
ey

no debiasing

after selection

Figure 2: The number of key bits, per bit of the initial key,
that can be extracted to generate a second key, as function of
the average error probability 𝑃𝑒 . The plot is based on the sta-
tistical model for SRAM PUFs with symmetry assumptions
as described in 4.3.1.
0.988, and the min-entropy gives the entropy of 0.949. These
results lead to the estimation that each SRAM PUF bit on
the target device can provide 0.949 bit of entropy.

Given the 0.949 bit PUF entropy and 5% noise, there will
be around 380 bits unpredictability between multiple power-
up patterns on the same 1KB SRAM PUFs. This leads to
the result that 1KB SRAM is sufficient to derive a 256 bit
root key.

4.3 Regenerating the root key

In Section 2.3 two security challenges were introduced that
require replacement of the root key. In this section we discuss
both scenarios from an information theoretic point of view.
For each scenario, we explain under which conditions the
replacement can be performed securely, and how many bits
can be generated for the second key.

4.3.1 SRAM PUF statistics. First of all, given that there are 𝑛
SRAM cells, the SRAM PUF observations are binary vectors
of length 𝑛. We assume that each SRAM cell has a unique
one-probability, which defines the probability that a one is
observed. Furthermore, we assume that the SRAM cells are
independent. That is, the one-probabilities are independent
and identically distributed over the SRAM cells. Finally, we
assume that the distribution of the one-probabilities (over the
SRAM cells) is symmetric. Note that these properties hold
for the Maes [21, 22] statistical model for SRAM PUFs, when
the parameters are chosen s.t. the SRAM PUF is unbiased.

4.3.2 Refreshing the root key. Sometimes an IoT node may
be transferred to a new owner, see 2.3 Challenge 2. First, any
installed software is removed from the IoT node by clearing
the memories. Then, the new owner installs a new software
image, and rebuilds the security architecture of the node, see
Manufacturing phase in Fig. 1.

Since a clean install is performed, we assume that the root
key and corresponding helper data must be regenerated. The
new key and helper data replace the old data. However, an
attacker may have stored the previous helper data. There-
fore, we need to ensure that additional helper data does not

reveal information about the current or previous key. This
corresponds to the multiple enrollment scenario that was
studied in [18]. It was shown that when the distribution of
the one-probabilities is symmetric, any number of helper data
still does not reveal information about the keys. Therefore,
as long as the SRAM PUF one-probabilities are symmetric, a
new root key can be generated securely, and a secure device
transfer is possible (any number of times). The new root key
has the same length (bits) as the original root key.

4.3.3 Regenerating the root key after exposure. Sometimes
an attack may be successful and the root key may have been
revealed, see 2.3 Challenge 3. In this case a new root key
should be generated that is independent of the previous key.

Since the original key was revealed, we assume that the
original key and helper data are public information. Further-
more, it can be shown that the SRAM PUF observation that
was used to generate the original key can be derived from
this information. Therefore, we can model this scenario by
considering the new SRAM PUF observation conditioned on
the original SRAM PUF observation. Note that the second
observation reveals information about the reliability of the
SRAM cells, which is information that an attacker does not
have. Therefore, it provides additional entropy that can be
used to extract a second key.

We are now interested in the number of key bits that can
be generated securely for the second key. The number of key
bits is equal to the secret-key rate (see Section 4.1) times the
number of SRAM cells. It follows from information-theoretic
results, see, e.g., [1, 24] that the maximum achievable secret-
key rate for the initial key is given by the mutual information
between two observations of the SRAM PUF. Furthermore,
the maximum achievable rate for the second key is given by
the mutual information between two observations conditioned
on the original SRAM PUF observation, see, e.g., [20]. Here,
we are interested in the number of additional key bits that can
be extracted, after the original key was revealed. Therefore,
we study the ratio between the achievable rate of the first
and the second key, see Fig. 2. We find that, for average error
probability .15, the second key can have approximately .241
times the length of the original key. This corresponds to 61
bits given that the initial key was a 256 bit key.

Although, we have given an indication for the achievable
key length for the second key, it is not clear how such a key
can be generated securely. First of all, we note that we can
replace the second observation by the error vector between
the two observations, without loosing any information. By
symmetry of the one-probability distribution, the average
error probabilities of the SRAM cells are symmetric. That
is, the probability of an error given that a one was observed
initially, is equal to the probability of an error given that a
zero was observed. Therefore, we can model the error-vector
as a binary random vector with average one-probability equal
to the average error-probability of the SRAM PUF. We use
the error vector as a source for generating the new root key.

The one-probability of the error vector is smaller than
1/2, and thus we consider the error vector as biased. It is

known that bias of the input vector threatens the security
of the root key generation. Therefore, we propose to first
apply a debiasing scheme, like selection, see, e.g., [19], to the
error vector. Based on the results in [19], we can calculate
the maximum achievable rate after selection for our scenario.
Again, we focus on the ratio of the rate of the 2nd key
w.r.t. the rate of the 1st key and plot the result, see Fig. 2.
Clearly, debiasing comes at a cost in the number of extractable
key bits. However, after debiasing, a regular helper data
construction can be used for the key generation. Therefore,
it does provide a strategy for generating the second key.
Our results indicate that, for average error probability .15,
the second key generated based on a selection strategy can
approximately have .122 times the length of the original key.
This corresponds to 31 bits given that the initial key was a
256 bit key.

We note that implementations of helper data schemes in
practice do not achieve the information theoretic rates. Still,
our results indicate that even after an attack has revealed the
original key, a new root key may be generated that is secure.
Furthermore, we have presented a strategy that can be used
to generate such a key. This is a promising result that may
inspire development of new schemes that can recover from a
major security breach like revealing the root key.

5 CONCLUSIONS

RESCURE is a software solution which tackles important
IoT device security challenges. It does not require hardware
changes to the IoT device however it provides hardware grade
security level since it uses the signals deriving from existing
hardware to generate keys and identities. In this way, it is
easy to retrofit an existing device to a secure one. A security
architecture is proposed to tackle all the critical security
challenges during IoT device life cycle. It is supporting Digital
Identity generation, IoT to cloud connectivity, E2E security
and secure storage of sensitive data use cases. A proof-of
concept proves the feasibility of our solution with respect to
the achieved performance. Reliability and entropy analysis
of the SRAM PUF technology proves the high quality of
the source of the key. Finally, a theoretical analysis shows
that our technology could be used in the scenarios of owner
transfer and attack recovery.

ACKNOWLEDGMENTS

Supported by the Eurostars-2 with grant agreement E11897
RESCURE ”Retrofit Security for Critical infrastructures”.

REFERENCES
[1] R. Ahlswede and I. Csiszàr. 1993. Common Randomness in Infor-

mation Theory & Cryptography. IEEE Trans. Inf. Theory 39, 4
(jul 1993), 1121–1132.

[2] Amazon. [n.d.]. Amazon. https://www.amazon.com
[3] Amazon. [n.d.]. Amazon FreeRTOS. https://github.com/aws/

amazon-freertos
[4] Amazon. [n.d.]. AWS IoT SDK Python v2. https://github.com/

aws/aws-iot-device-sdk-python-v2
[5] Orlando Arias, Kelvin Ly, and Yier Jin. 2017. Security and privacy

in IoT era. In Smart Sensors at the IoT Frontier. Springer, 351–
378.

https://www.amazon.com
https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-python-v2

RESCURE: A security solution for IoT life cycle

[6] ARM. 2020. TrustZone. Retrieved April 03, 2020 from https:
//developer.arm.com/ip-products/security-ip/trustzone

[7] ARMmbed. [n.d.]. mbedtls. https://github.com/ARMmbed/
mbedtls

[8] boto. [n.d.]. boto3. https://github.com/boto/boto3
[9] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede. 2015.

Helper Data Algorithms for PUF-Based Key Generation: Overview
and Analysis. IEEE Trans. Comput.-Aided Des. Integr. Circuits
and Syst. 34, 6 (June 2015), 889–902. https://doi.org/10.1109/
tcad.2014.2370531

[10] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. 2004. Fuzzy
extractors: How to generate strong keys from biometrics and
other noisy data. In International conference on the theory and
applications of cryptographic techniques. Springer, 523–540.

[11] Google. [n.d.]. Google. https://www.google.com
[12] J. Guajardo, S. S. Kumar, G. Schrijen, and P. Tuyls. 2007. FPGA

Intrinsic PUFs and Their Use for IP Protection. In Cryptographic
Hardware Embedded Syst. - CHES. 63–80.

[13] D. E. Holcomb, W. P. Burleson, and K. Fu. 2009. Power-Up SRAM
state as an identifying fingerprint and source of true random
numbers. IEEE Trans. Comput. 58, 9 (2009), 1198–1210. https:
//doi.org/10.1109/TC.2008.212

[14] IBM. 2020. Top 10 IoT security challenges. Retrieved March 19,
2020 from https://developer.ibm.com/technologies/iot/articles/
iot-top-10-iot-security-challenges/

[15] INTRINSIC ID. 2018. Flexible Key Provisioning. Retrieved April
03, 2020 from http://go.intrinsic-id.com/flexible-key-provisioning-
sram-puf-lp

[16] Intel. 2020. Tinycrypt. https://github.com/intel/tinycrypt
[17] iot eclipse. 2020. IoT developer survey 2019. Re-

trieved March 19, 2020 from https://drive.google.com/file/d/
17WEobD5Etfw5JnoKC1g4IME XCtPNGGc/view

[18] L. Kusters, T. Ignatenko, F. M.J. Willems, R. Maes, E. van der
Sluis, and Georgios Selimis. 2017. Security of helper data schemes
for SRAM-PUF in multiple enrollment scenarios. In IEEE Int.
Symp. Inf. Theory - ISIT. IEEE. https://doi.org/10.1109/isit.
2017.8006840

[19] L. Kusters and F. M. J. Willems. 2019. Debiasing of SRAM
PUFs: Selection and Balancing. In IEEE Int. Workshop Inf.
Forensics and Secur. - WIFS. Delft, The Netherlands. https:
//doi.org/10.1109/WIFS47025.2019.9035094

[20] L. Kusters and F. M. J. Willems. 2019 - Early access. Secret-Key
Capacity Regions for Multiple Enrollments with an SRAM-PUF.
IEEE Trans. on Inform. Forensics and Security (2019 - Early
access).

[21] R. Maes. 2013. An Accurate Probabilistic Reliability Model for
Silicon PUFs. In Cryptographic Hardware and Embedded Systems
- CHES 2013, Guido Bertoni and Jean-Sébastien Coron (Eds.),
Vol. 8086 LNCS. Springer Berlin Heidelberg, Berlin, Heidelberg,
73–89. https://doi.org/10.1007/978-3-642-40349-1 5

[22] R. Maes, P. Tuyls, and I. Verbauwhede. 2009. A soft decision
helper data algorithm for SRAM PUFs. In IEEE International
Symposium on Information Theory.

[23] Roel Maes and Ingrid Verbauwhede. 2010. Physically unclonable
functions: A study on the state of the art and future research
directions. In Towards Hardware-Intrinsic Security. Springer,
3–37.

[24] Ueli M. Maurer. 1993. Secret key agreement by public discussion
from common information. IEEE Trans. Inf. Theory 39, 3 (1993),
733–742. https://doi.org/10.1109/18.256484

[25] Microsoft. [n.d.]. Amazon. https://www.microsoft.com
[26] Microsoft. 2020. The Seven Properties of Highly Secure Devices.

Retrieved March 19, 2020 from https://www.microsoft.com/en-us/
research/publication/seven-properties-highly-secure-devices/

[27] Mitre. 2020. Common Vulnerabilities and Exposures. Retrieved
April 03, 2020 from https://cve.mitre.org/index.html

[28] Yoav Nir and Adam Langley. 2015. ChaCha20 and Poly1305 for
IETF Protocols. Internet Engineering Task Force (2015).

[29] NIST. 2018. CVE-2018-14786. Retrieved March 19, 2020 from
https://nvd.nist.gov/vuln/detail/CVE-2018-14786

[30] NIST. 2018. CVE-2018-16546. Retrieved March 19, 2020 from
https://nvd.nist.gov/vuln/detail/CVE-2018-16546

[31] NIST. 2018. CVE-2019-13523. Retrieved March 19, 2020 from
https://nvd.nist.gov/vuln/detail/CVE-2019-13523

[32] NIST. 2019. CVE-2019-11220. Retrieved March 19, 2020 from
https://nvd.nist.gov/vuln/detail/CVE-2019-11220

[33] NIST. 2019. CVE-2019-14236 Detail. Retrieved March 19, 2020
from https://nvd.nist.gov/vuln/detail/CVE-2019-14236

[34] NIST. 2019. CVE-2019-14239 Detail. Retrieved March 19, 2020
from https://nvd.nist.gov/vuln/detail/CVE-2019-14239

[35] NIST. 2019. CVE-2019-17391 Detail. Retrieved March 19, 2020
from https://nvd.nist.gov/vuln/detail/CVE-2019-17391

[36] NIST. 2019. CVE-2019-2267 Detail. Retrieved March 19, 2020
from https://nvd.nist.gov/vuln/detail/CVE-2019-2267

[37] NIST. 2019. CVE-2019-5160. Retrieved March 19, 2020 from
https://nvd.nist.gov/vuln/detail/CVE-2019-5160

[38] NIST. 2019. CVE-2019-5478 Detail. Retrieved March 19, 2020
from https://nvd.nist.gov/vuln/detail/CVE-2019-5478

[39] NIST. 2019. CVE-2019-5995. Retrieved March 19, 2020 from
https://nvd.nist.gov/vuln/detail/CVE-2019-5995

[40] NIST. 2020. CVE-2020-6769 Detail. Retrieved March 19, 2020
from https://nvd.nist.gov/vuln/detail/CVE-2020-6769

[41] NIST. 2020. CVE-2020-9435 Detail. Retrieved March 19, 2020
from https://nvd.nist.gov/vuln/detail/CVE-2020-9435

[42] NIST. 2020. CVE-2020-9544 Detail. Retrieved March 19, 2020
from https://nvd.nist.gov/vuln/detail/CVE-2020-9544

[43] U.S. Department of Homeland Security. 2016. Strategic
Pronciples for securing the IoT. Retrieved March 19, 2020
from https://www.dhs.gov/sites/default/files/publications/
Strategic Principles for Securing the Internet of Things-2016-
1115-FINAL....pdf

[44] OWASP. 2020. IoT top vulnerabilities. Retrieved March 19, 2020
from https://owasp.org/www-project-internet-of-things/

[45] Minghua Qu. 1999. SEC 2: Recommended elliptic curve domain
parameters. Certicom Res., Mississauga, ON, Canada, Tech.
Rep. SEC2-Ver-0.6 (1999).

[46] STMicroelectronics. 2020. B-L475E-IOT01A. https://www.st.
com/en/evaluation-tools/b-l475e-iot01a.html

[47] STMicroelectronics. 2020. STM32 ST-LINK Utility. https:
//www.st.com/en/development-tools/stsw-link004.html

[48] STMicroelectronics. 2020. STM32L475VG. https://www.st.com/
en/microcontrollers-microprocessors/stm32l475vg.html

[49] The Verge. 2020. Zoom isn’t actually E2E encrypted.
https://www.theverge.com/2020/3/31/21201234/zoom-end-to-
end-encryption-video-chats-meetings

[50] Wikipedia. [n.d.]. CSR. Retrieved April 03, 2020 from https:
//en.wikipedia.org/wiki/Certificate signing request

[51] Wikipedia. [n.d.]. Transport Layer Security. https://en.
wikipedia.org/wiki/Transport Layer Security

[52] Wikipedia. 2020. Internet of Things. Retrieved March 19, 2020
from https://en.wikipedia.org/wiki/Internet of things

[53] Frans MJ Willems, Yuri M Shtarkov, and Tjalling J Tjalkens.
1995. The context-tree weighting method: basic properties. IEEE
transactions on information theory 41, 3 (1995), 653–664.

https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://github.com/ARMmbed/mbedtls
https://github.com/ARMmbed/mbedtls
https://github.com/boto/boto3
https://doi.org/10.1109/tcad.2014.2370531
https://doi.org/10.1109/tcad.2014.2370531
https://www.google.com
https://doi.org/10.1109/TC.2008.212
https://doi.org/10.1109/TC.2008.212
https://developer.ibm.com/technologies/iot/articles/iot-top-10-iot-security-challenges/
https://developer.ibm.com/technologies/iot/articles/iot-top-10-iot-security-challenges/
http://go.intrinsic-id.com/flexible-key-provisioning-sram-puf-lp
http://go.intrinsic-id.com/flexible-key-provisioning-sram-puf-lp
https://github.com/intel/tinycrypt
https://drive.google.com/file/d/17WEobD5Etfw5JnoKC1g4IME_XCtPNGGc/view
https://drive.google.com/file/d/17WEobD5Etfw5JnoKC1g4IME_XCtPNGGc/view
https://doi.org/10.1109/isit.2017.8006840
https://doi.org/10.1109/isit.2017.8006840
https://doi.org/10.1109/WIFS47025.2019.9035094
https://doi.org/10.1109/WIFS47025.2019.9035094
https://doi.org/10.1007/978-3-642-40349-1_5
https://doi.org/10.1109/18.256484
https://www.microsoft.com
https://www.microsoft.com/en-us/research/publication/seven-properties-highly-secure-devices/
https://www.microsoft.com/en-us/research/publication/seven-properties-highly-secure-devices/
https://cve.mitre.org/index.html
https://nvd.nist.gov/vuln/detail/CVE-2018-14786
https://nvd.nist.gov/vuln/detail/CVE-2018-16546
https://nvd.nist.gov/vuln/detail/CVE-2019-13523
https://nvd.nist.gov/vuln/detail/ CVE-2019-11220
https://nvd.nist.gov/vuln/detail/CVE-2019-14236
https://nvd.nist.gov/vuln/detail/CVE-2019-14239
https://nvd.nist.gov/vuln/detail/CVE-2019-17391
https://nvd.nist.gov/vuln/detail/CVE-2019-2267
https://nvd.nist.gov/vuln/detail/ CVE-2019-5160
https://nvd.nist.gov/vuln/detail/CVE-2019-5478
https://nvd.nist.gov/vuln/detail/ CVE-2019-5995
https://nvd.nist.gov/vuln/detail/CVE-2020-6769
https://nvd.nist.gov/vuln/detail/CVE-2020-9435
https://nvd.nist.gov/vuln/detail/CVE-2020-9544
https://www.dhs.gov/sites/default/files/publications/Strategic_Principles_for_Securing_the_Internet_of_Things-2016-1115-FINAL....pdf
https://www.dhs.gov/sites/default/files/publications/Strategic_Principles_for_Securing_the_Internet_of_Things-2016-1115-FINAL....pdf
https://www.dhs.gov/sites/default/files/publications/Strategic_Principles_for_Securing_the_Internet_of_Things-2016-1115-FINAL....pdf
https://owasp.org/www-project-internet-of-things/
https://www.st.com/en/evaluation-tools/b-l475e-iot01a.html
https://www.st.com/en/evaluation-tools/b-l475e-iot01a.html
https://www.st.com/en/development-tools/stsw-link004.html
https://www.st.com/en/development-tools/stsw-link004.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l475vg.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l475vg.html
https://www.theverge.com/2020/3/31/21201234/zoom-end-to-end-encryption-video-chats-meetings
https://www.theverge.com/2020/3/31/21201234/zoom-end-to-end-encryption-video-chats-meetings
https://en.wikipedia.org/wiki/Certificate_signing_request
https://en.wikipedia.org/wiki/Certificate_signing_request
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Internet_of_things

Table 1: Some reported IoT product vulnerabilities over the last months

Vulnerability Reference & Product Vulnerability Type Description

Itron Centron CL200 smart meter[5] Modify Device ID Change the Device ID from EEPROM and
Impersonate other device.

CVE-2020-9435, PHOENIX ROUTER [41] Hardcoded digital identity Impersonation and man-in-the-middle attack. Generic
certificate (and key) is not replaced by a device-
specific certificate during installation.

CVE-2018-16546 , Amcrest networked devices [30] Hardcoded key Hardcoded SSL private key across different customers’
installations, which allows remote attackers to defeat
cryptographic protection mechanisms by leveraging
knowledge of this key from another installation.

CVE-2019-17391, Espressif ESP32 MCU [35] Read keys from eFuses Injecting a glitch into the power supply of the chip
shortly after reset and exposure of sensitive
information to an unauthorized actor.

CVE-2019-2267, Qualcomm Snapdragon [36] Secure bootloader bypass Locked memory regions may be modified through
other interfaces due to improper access control.

CVE-2019-5478, Xilinx Zynq UltraScale+ [38] Secure bootloader bypass Modification of control fields of the boot image
leading to an incorrect sec boot.

CVE-2020-6769, Video Streaming Gateway [40] No authentication Missing Authentication for Critical Function in the
Bosch Video Streaming Gateway (VSG) allows
an unauthenticated remote attacker to retrieve and
set arbitrary configuration data of the Video
Streaming Gateway.

CVE-2019-14239, NXP Kinetis Kv1x [34] IP Protection Leveraging a load instruction inside the execute-only
region to expose the protected code into a CPU
register.

CVE-2019-14236 STM32 MCU [33] IP Protection Proprietary Code Read Out Protection (PCROP)
(a software IP protection method) can be defeated
by observing CPU registers and the effect of
code / instruction execution.

CVE-2020-9544, D-Link router [42] No authenticated update The administrative interface doesn’t perform
authentication checks for a firmware-update. Any
attacker that can access the administrative interface
can install firmware of their choice.

CVE-2019-5995, Canon EOS cameras [39] No authenticated update Missing authorization vulnerability exists in EOS
series digital cameras. A successful exploitation may
result in a specially crafted firmware update or
unofficial firmware update being applied without
user’s consent via unspecified vector.

CVE-2019-5160, Wago PLC [37] No authenticated update A specially crafted HTTPS POST request can cause
the software to connect to an unauthorized host,
resulting in unauthorized access to firmware update
functionality.

CVE-2019-11220, Yunni Technology iLnkP2P [32] Authentication flaw Allows for stealing device passwords and eventually
the takeover of affected devices. iLnkP2P is a way
for users to connect to their devices without
involving any manual configuration.

CVE-2018-14786, Medical syringe pumps BD [29] Missing authentication Improper authentication vulnerability where the
software does not perform authentication for
functionality that requires a provable user identity,
where it may allow a remote attacker to gain
unauthorized access to various Alaris Syringe pumps.

CVE-2019-13523, IP Cameras Honeywell[31] Bypass authentication Improper authentication vulnerability where the
the integrated web server of the affected devices could
allow remote attackers to obtain web configuration
data for IP cameras and NVRs (Network Video
Recorders), which can be accessed without
authentication over the network.

	Abstract
	1 Introduction
	2 Requirements and challenges
	2.1 Manufacturing Phase
	2.2 Operations Phase
	2.3 End of IoT Life

	3 Our solution
	3.1 Security architecture
	3.2 Set-up description
	3.3 Proof-of-concept performance analysis

	4 RESCURE Root key generation
	4.1 Challenges of root key generation
	4.2 Performance of root key generation
	4.3 Regenerating the root key

	5 Conclusions
	Acknowledgments
	References

