
DEMO: RESCURE: Retrofit Security for Critical Infrastructures
Mario Münzer
Stefan Ilić

muenzer@technikon.com
ilic@technikon.com

Technikon Forschungs- und
Planungsgesellschaft mbH

Villach, Austria

Georgios Selimis
Rui Wang

Georgios.Selimis@intrinsic-id.com
Rui.Wang@intrinsic-id.com

Intrinsic ID
Eindhoven, Netherlands

Frans M.J. Willems
Lieneke Kusters

F.M.J.Willems@tue.nl
C.J.Kusters@tue.nl

Eindhoven University of Technology
Eindhoven, Netherlands

ABSTRACT
Low-cost interconnected devices, so-called Internet-of-Things (IoT),
commonly have no dedicated or posses insufficient hardware secu-
rity features. This is challenging, as IoT devices are becoming an
integral part of critical infrastructures providing much needed addi-
tional functionality but also creating a significant security threat to
the infrastructure. Due to the scale of IoT integration in critical in-
frastructures, a key issue in initial deployment and replacing of the
devices is often the cost. RESCURE delivers a low-cost IoT security
solution based on unique hardware anchors. More precisely, we are
using PUFs (Physical Unclonable Function) technology based on
SRAM (Static Random-Access Memory), which provides a unique
and unclonable identifier as well as a root key for each device. As
SRAM-PUFs-based approaches require no additional specialized
hardware, it also presents a viable approach of retrofitting existing
embedded devices already used.

KEYWORDS
Internet-of-Things, Embedded systems security, Physically Un-

clonable Function, End-to-end encryption, multiple observations

1 INTRODUCTION
The IoT device, as defined by ARM [1], is a piece of hardware
mostly equipped with a sensor transmitting data over the inter-
net. As cost saving measure, IoT devices are often based on small,
inexpensive, and resource constrained chips. This design choice
helps with scalability, as IoT devices usually have wide deployment,
but reduces support for existing security solutions which often
rely on dedicated hardware security features. Furthermore, IoT de-
vices are often using M2M (Machine-to-Machine) communication,
have 24/7 uptime and are deployed in field, making them harder
to access physically and replace. Due to given risk factors, many
recent attacks target on IoT devices as the first step in order to
compromise the underlying infrastructures [7]. RESCURE is a Euro-
pean research project, focused on developing low-cost IoT security
solution for device protection and secure communication while
keeping selected approach applicable to existing devices. The US
Department of Homeland Security [6] recommends that devices
rely on hardware with incorporated security features, e.g, Arm
TrustZone [2]. In RESCURE, to cover a wide range of devices while
following set recommendations, we focus on the most commonly
available hardware component of IoT devices, namely the SRAM.
Generating the root key using SRAM-PUF technology is a low-cost
alternative to storing a key in protected memory. Furthermore,

since the SRAM is already available on any IoT device, our scheme
supports retrofitting the existing hardware to a secure system.

AWS

End-to-End Encryption

Figure 1: OTA update & deployment flow of demonstrator

2 RESCURE
Due to inherent process variation during the manufacturing of
SRAM, small and uncontrolled variations occur in the silicon ma-
terial giving each SRAM a unique initial state [4]. The initial state
is not constant but varies between each SRAM power up phase
to a certain degree, no matter the production line. Nevertheless,
as the intra-subject difference is much less pronounced than the
inter-subject difference, even between SRAMs from the same man-
ufacturer, this enables us to uniquely identify devices based on the
initial state and generate appropriate root key [3]. In order to turn
the noisy SRAM initial state into a reliable and device-unique root
key, a helper data scheme is applied on top of SRAM-PUF. For error
correction, we implemented an algorithm based on concatenation
of BCH code (15,7,5) and repetition code (7,1). Given the 5% inter-
subject difference observed on the device at room temperature, our
helper data scheme can regenerate the root key with the error rate
of 10−7.

In RESCURE, we implemented three distinct security features
based on the root key extracted from the SRAM-PUF: 1) secure
connection and device identification with the cloud; 2) E2E (End-to-
end) encrypted communication with backend; and 3) secure OTA
(Over-the-air) software/firmware update.

The first usage of SRAM-PUF root key, in RESCURE, is a runtime
generation of SECP256R1 key pair. During the device enrolment
phase, we capture the key pair calculated on the device and generate
an appropriate device certificate, which we register with the cloud
provider (in our case Amazon Web Services). This enables us to
tie the key pair, and therefore SRAM-PUF root key, with a thing
ID, a unique identifier with whom Amazon identifies the device.

Ilić and Münzer, et al.

This approach prevents the cloning of software as a different key
would be generated on a different device. Also, as an added benefit,
generating keys at runtime avoids the possibility of their extraction
from flash and the need for complex key protection schemes. The
key generation itself is based on seeding HMACDRBG (hash-based
message authentication code - deterministic random bit generator)
using the root key and using it as an input to SECP256R1 generation.

The key pair required for E2E encryption is also generated in
the same manner. Meanwhile, the backend (in our case node.js
script running on PC) generates its own SECP256R1 keypair. Both
the device and the backend register to the cloud provider and sub-
scribe to the same MQTT topic. Once they exchange their public
keys, both sides generate shared secret using ECDH key exchange
protocol. The data encryption and authentication between these
endpoints is based on this shared secret. Thus, another security
layer is established on top of the TLS connection, preventing cloud
provider access to the unencrypted data.

The last feature based on SRAM-PUF root key is theOTAfirmware
update. New application images, during transit and storage at Ama-
zon S3 servers, are encrypted using ChaCha20 symmetric cipher.
To prevent an attacker from obtaining this symmetric key from the
device flash, we encrypt it using the root key. In all of the given
cases, the root key is zeroed out immediately after use. Further,
even if we reserve and use a certain amount of the SRAM, this
space is only needed within the bootloader and released right after
the root key generation. In RESCURE we have also studied new
methods that can improve reliability of the root key reconstruction.
As such, we have developed a new scheme that we call the multiple
observations helper data scheme. The scheme can construct helper
data that is based on multiple SRAM-PUF observations instead of
a single observation. The more observations are used, the more
reliable the key reconstruction is. We have built a MATLAB GUI
that explains the functionality of the scheme, and demonstrates its
performance through simulations, see Section 3.2.

3 DEMONSTRATION
We present the functionality developed in RESCURE by showcas-
ing two distinct demonstrators: initial application deployment on
board and procedure of OTA firmware update (D1) and MATLAB
application that demonstrates the multiple observations helper data
scheme (D2). For each demonstrator, the authors (presenters) will
explain the underlying usage of SRAM-PUF and achieved results.

3.1 D1: Deployment and OTA Firmware Update
In this demonstrator, we aim to illustrate deployment and OTA
update work-flow using the B-L475E-IOT01A board [8], based on
STM32L475VG [9] MCU. The architecture of the system is pre-
sented in Figure 1. The demonstration starts by flashing the initial
application image, bootloader and necessary meta-data using RES-
CURE GUI. Once run, the application automatically establishes a
connection to AWS based on SECP256R1 key pair generated by
using the SRAM-PUF root key at runtime. Using this connection,
we send periodic sensor data (temperature data) to a predetermined
MQTT topic. In the second part of the demonstration, we create
an OTA update job using RESCURE GUI. The OTA Update Agent
running on the board is notified by AWS, on a dedicated MQTT

topic, that a new update is available and starts the update proce-
dure. It regenerates SRAM-PUF root key and decrypts symmetric
encryption key stored in flash. Using this key, the downloaded
chunks, representing the firmware update, are decrypted as they
arrive using ChaCha20. When the download is finished, the reboot
of the IoT device is triggered and the new application is executed.
For this demonstration purpose, the updated application image en-
ables, as an additional functionality, end-to-end encryption based
on SRAM-PUF.

Figure 2: RESCURE communication GUI

As presented in Figure 2, the first section of the RESCURE com-
munication GUI is displaying the raw data captured by the IoT
device, which in turn represents the temperature sensor data in
its unencrypted state. Following, respectively in the second sec-
tion of the communication GUI, the encrypted messages received
are displayed, and represents the communication traffic at AWS’
side. Following further, in the third section of the GUI, finally the
decrypted messages are displayed, which in turn represents the
end-point of the end-to-end communication. Resulting, it is clearly
demonstrated that the messages cannot be decrypted on the AWS’
side and in turn are only visible to the IoT and backend. Additionally,
we present the temperature sensor data, which is the example data
transferred between IoT and backend, in a corresponding graph.

DEMO: RESCURE: Retrofit Security for Critical Infrastructures

3.2 D2: Multiple Observations Helper Data
Scheme

In this demonstrator, we aim to illustrate performance and security
of the multiple observations helper data scheme. The demo is run-
ning in MATLAB, where we use a statistical model[5] to simulate
the SRAM-PUF observations. Furthermore, we use a concatenated
LDPC(256,128) and repetition code as the error-correcting code.
During the demo we visualize the helper data construction and key
reconstruction in real-time. We vary the number of used observa-
tions, and plot the resulting reconstruction error rate (FER) in real
time.We show that FER decreases whenmore observations are used.
Furthermore, it is possible to vary the rate of the error-correcting
code, by adjusting the used repetition rate. Note that a smaller rate
means increased efficiency of the scheme, since less SRAM cells
are required to achieve the same key length. The simulation results
show that a similar FER can be achieved with smaller repetition rate
and thus considering multiple observations can improve efficiency
of the scheme.

Figure 3: RESCURE MATLAB GUI

Finally, we calculate the log-likelihood ratios (LLRs) after observ-
ing the new helper data, both for the decoder and for an attacker.
For the decoder, it shows how the updated helper data (based on
more observations) improves the reliability of the estimated code
bits. For the attacker, it represents the information leakage about
the code bits. The result shows that for an unbiased SRAM-PUF,
the LLRs of the attacker are constant and do not change when more
observations are used. Therefore, it should convince a viewer that
no leakage occurs as a result of the multiple observations helper
data for unbiased SRAM-PUFs. Instead, for a biased SRAM-PUF the
derived LLRs show that information about the code bits is leaked
to an attacker. Therefore, the scheme is not secure in case of biased
SRAM-PUFs.

A screenshot of the MATLAB GUI is shown in Figure 3.

4 CONCLUSION
We presented SRAM-PUF based security enhancements developed
in RESCURE. The objective of this project is to provide a suitable

and cost-effective way to retrofit existing devices by adding tamper-
protection, secure storage, end-to-end communication encryption,
unclonable ID and device authentication. We aim to increase the
security of IoT critical infrastructures providing solution applicable
to a variety of devices including low-end, resource-constrained
devices.

ACKNOWLEDGMENTS
This work was partially supported by the Eurostars-2 joint pro-
gramme with co-funding from the European Union Horizon 2020
research and innovation programme under the grant agreement
E11897 RESCURE "Retrofit Security for Critical infrastructures".
Furthermore, this work was also partially supported by the Aus-
trian Ministry for Transport, Innovation and Technology under the
framework of "IKT der Zukunft" with the FFG grant agreement
project 865233.

REFERENCES
[1] ARM. 2020. IoT Devices. Retrieved April 08, 2020 from https://www.arm.com/

glossary/iot-devices
[2] ARM. 2020. TrustZone Technology. Retrieved April 03, 2020 from https://developer.

arm.com/ip-products/security-ip/trustzone
[3] Jorge Guajardo, Sandeep S. Kumar, Geert-Jan Schrijen, and Pim Tuyls. 2007. FPGA

Intrinsic PUFs and Their Use for IP Protection. In Cryptographic Hardware Em-
bedded Syst. - CHES. 63–80.

[4] Daniel E. Holcomb, Wayne P. Burleson, and Kevin Fu. 2009. Power-Up SRAM
state as an identifying fingerprint and source of true random numbers. IEEE Trans.
Comput. 58, 9 (2009), 1198–1210. https://doi.org/10.1109/TC.2008.212

[5] Roel Maes, Pim Tuyls, and Ingrid Verbauwhede. 2009. A soft decision helper
data algorithm for SRAM PUFs. In IEEE Int. Symp. Inf. Theory - ISIT. 2101–2105.
https://doi.org/10.1109/ISIT.2009.5205263

[6] U.S. Department of Homeland Security. 2016. Strategic Pronciples for se-
curing the Internet of Things (IoT). Retrieved March 19, 2020 from
https://www.dhs.gov/sites/default/files/publications/Strategic_Principles_
for_Securing_the_Internet_of_Things-2016-1115-FINAL....pdf

[7] Ioannis Stellios, Panayiotis Kotzanikolaou, Mihalis Psarakis, Cristina Alcaraz, and
Javier Lopez. 2018. A Survey of IoT-enabled Cyberattacks: Assessing Attack Paths
to Critical Infrastructures and Services. IEEE Communications Surveys I& Tutorials
PP (07 2018), 1–1. https://doi.org/10.1109/COMST.2018.2855563

[8] STMicroelectronics. 2020. B-L475E-IOT01A. Retrieved April 08, 2020 from https:
//www.st.com/en/evaluation-tools/b-l475e-iot01a.html

[9] STMicroelectronics. 2020. STM32L475VG. Retrieved April 08, 2020 from https:
//www.st.com/en/microcontrollers-microprocessors/stm32l475vg.html

https://www.arm.com/glossary/iot-devices
https://www.arm.com/glossary/iot-devices
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://doi.org/10.1109/TC.2008.212
https://doi.org/10.1109/ISIT.2009.5205263
https://www.dhs.gov/sites/default/files/publications/Strategic_Principles_for_Securing_the_Internet_of_Things-2016-1115-FINAL....pdf
https://www.dhs.gov/sites/default/files/publications/Strategic_Principles_for_Securing_the_Internet_of_Things-2016-1115-FINAL....pdf
https://doi.org/10.1109/COMST.2018.2855563
https://www.st.com/en/evaluation-tools/b-l475e-iot01a.html
https://www.st.com/en/evaluation-tools/b-l475e-iot01a.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l475vg.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l475vg.html

	Abstract
	1 Introduction
	2 RESCURE
	3 Demonstration
	3.1 D1: Deployment and OTA Firmware Update
	3.2 D2: Multiple Observations Helper Data Scheme

	4 Conclusion
	Acknowledgments
	References

