
www.embedded-world.eu

Creating an Efficient Random Number Generator

Using Standard SRAM
 A universal approach for adding strong cryptographic randomness to any IoT device

Geert-Jan Schrijen

Intrinsic ID

Eindhoven, The Netherlands

geert.jan.schrijen@intrinsic-id.com

Roel Maes

Intrinsic ID

Eindhoven, The Netherlands

roel.maes@intrinsic-id.com

Abstract— With the rapid proliferation of Internet of

Things (IoT) devices, it is vital to protect these devices and

their communications. This requires implementing

cryptographic systems suitable for low-cost devices, which

include a Random Number Generator (RNG).

Cryptographic protocols need random numbers, as certain

inputs need to be unpredictable for attackers. The proper

way to generate those is to first generate a truly random

seed from a non-deterministic physical source. Then this

seed is used as input for a deterministic algorithm that turns

it into a large stream of random bits.

A recent study from Bishop Fox [1] shows a critical

vulnerability in RNGs used in billions of IoT devices, where

the physical source fails to generate sufficient entropy. This

compromises the RNG and puts the devices at risk of attack.

This paper details a physical entropy source for creating a

strong RNG solution that solves this problem, even on

existing IoT devices.

When a chip is powered, its SRAM fills with a random

pattern of 0s and 1s, which is highly unique for that chip

and can be used as a device identifier (also known as a

Physical Unclonable Function). However, between every

powerup there also is a certain number of unstable bits in

this unique pattern. A truly random seed for an RNG is

created by harvesting this noise, without requiring changes

to existing hardware. Given the wide availability of SRAM

this solution can be added via software at low cost, making

it perfectly suited for the IoT.

Keywords — Security; IoT; Cryptography; Random Number

Generation; Embedded Software

I. INTRODUCTION

It is estimated that by 2025, there will be more than 27 billion

devices connected to the Internet [2]. By interconnecting

billions of devices on the internet of things (IoT), the world has

become exposed to a plethora of security-related threats that

never existed before. While companies struggle to recover from

the damage caused by today’s cyber-attacks, attackers are

fabricating new low-cost attacks using increasingly cheaper

tools to attack IoT devices. The need for more security is clear.

A recent publication [3] from the Global Semiconductor

Alliance (GSA) outlines the concept of a security subsystem,

integrated into a larger microcontroller or system-on-chip

(SoC) controller, which in turn is at the heart of an IoT device.

Applications use this security subsystem for services such as

encryption of sensitive data, device authentication and setting

up secure connections to other devices.

To provide support for such applications, security subsystems

typically implement cryptographic functions for encryption,

message authentication and digital signatures. The proper use

of these functions requires a unique set of cryptographic keys

that are accessible only within the security subsystem and hence

stored securely from outside observers. Additionally,

unpredictable random values are needed for various

cryptographic protocols that the security subsystem is handling.

A. Secure Key Storage

Cryptographic keys are essential to the use of cryptography. It

was Auguste Kerckhoff who stated already in the 19th century,

that the security of a cipher should rely only on the secrecy of

the key and not on the secrecy of the cipher[4]. This principle

has become known as Kerckhoff’s Principle and is the basis of

all modern-day cryptography.

The fact that security relies totally on the security of the used

cryptographic keys has an important implication in practice. It

is of vital importance to guarantee that the cryptographic keys

used by a security subsystem are securely stored and only

accessible within the security subsystem. They need to be

guarded against readout, alteration and copying by attackers.

Traditional methods for secure key storage rely on storing a root

cryptographic key in non-volatile memory such as embedded

flash memory or one-time programmable (OTP) memory.

However, these methods have serious disadvantages in terms of

security, cost, reliability, and flexibility. A novel approach

avoiding these downsides is the use of an SRAM Physical

Unclonable Function (PUF), as is described in several

publications [5][7].

B. Random Number Generation

Besides relying on a well-protected secret key, many

cryptographic protocols also depend on the availability of

unpredictable random numbers. They are for example needed

in encryption schemes as initialization vector, for key

establishment protocols, and for the generation of secret keys,

PINs and passwords. A bad random number generator would

lead to predictability in the generated keys, which would

directly reduce the security level of a cryptographic mechanism

using such keys and hence give an undesirable advantage to an

attacker.

1) Problems with random numbers in practice

Over the past years there have been several examples where bad

quality random numbers have resulted in serious security

problems.

In 2010, a group of hackers called “fail0ver” discovered a

serious flaw in the use of random numbers for digitally signing

the Sony PlayStation 3 (PS3) software [8][9]. In the Elliptic-

Curve Digital Signature Algorithm (ECDSA) it is required that

for every signature that you generate, a new random nonce

value (the “k” parameter) is used. Failing to do so can be

catastrophic, as the private signature key can be directly derived

from only 2 signed messages that use the same nonce.

Unfortunately, that is exactly the flaw in Sony’s

implementation; they signed their software with a constant

nonce. Hence, with only two signed firmware images, the

hackers were able to retrieve Sony’s signing key and they could

correctly sign their own modified software to take over the

device.

A related problem of insufficient randomness in the application

of ECDSA signatures was found in 2013 in Android

implementations of bit-coin wallets[11]. Due to issues with the

underlying random generator in the java-based random

generator of Android, (pseudo) random sequences were

occasionally repeating. This led to ECDSA signatures on

bitcoin transactions with the same nonce values, leading to

compromised signature keys and theft of money.

The security of the RSA algorithm relies on the difficulty of

factoring large integers. RSA public keys are constructed by

multiplying two large prime numbers. These prime factors form

the private key of the crypto system and need to be of large

enough size and randomly generated in order to be

unpredictable to an attacker. In 2012 researchers discovered

issues with the RSA keys of thousands of Internet connected

devices [10]. It turned out that these devices have public keys

that share the same prime factor as part of their public key as

other devices. Whereas it is computationally infeasible to factor

a large composite number consisting of two random and

sufficiently large prime numbers, feasibility dramatically

increases when two RSA keys share a common prime factor

because more efficient algorithms exist to compute the greatest

common divisor of a product. Hence, the feasibility of

recovering the prime factors in RSA keys drastically increases

when RSA keys share common prime factors, and this caused

an immediate problem for the security of the discovered devices

relying on such weak keys. The underlying problem of these

weak RSA keys is the fact that they had been generated using

weak random generators on those devices.

More recently, a study of security company Bishop Fox showed

issues with the use of random generators in IoT devices[1],

putting billions of devices at risk. The researchers found that in

many cases the main microcontroller in an IoT device does have

a built-in true random number generator, but that it often has

shortcomings that the developer is not aware of. For example,

hardware random number generators cannot always produce

large streams of random numbers at high speed and will

indicate when they fail to do so. However, such return codes

need to be checked and software must take care of proper

handling. Unfortunately, the researchers found several cases of

widely re-used code in embedded operating systems where

return codes are not checked at all. Furthermore, some hardware

random generators have certain prescriptions of use which are

often overlooked or turn out to have imperfections in the

entropy that they produce.

2) The right approach

The proper way of establishing a cryptographically secure

random number generator on embedded devices is to start with

a true-random entropy source in the hardware of a device that

seeds a deterministic random bit generator (DRBG). The

entropy source must have known randomness properties such

that a guaranteed full entropy seed can be extracted to initialize

the DRBG. Furthermore, built-in health checks should run upon

initialization to monitor entropy of the source and halt upon

detection of deviations from the expected quality. The DRBG

produces large streams of random numbers to calling

applications and will trigger a reseed from the entropy source

after a pre-described number of output bits. Such an approach

is documented in the NIST SP 800-90 standards [12][13][14].

Following these standards is a requirement for devices that

claim FIPS compliance [15].

C. Outline

In the remainder of this paper, we describe how SRAM based

Physical Unclonable Functions (PUFs) can be used to build a

strong cryptographic random number generator on embedded

devices. We first describe the properties of SRAM PUFs and

how they can be used as a source of true randomness. Then we

explain how to use an SRAM PUF source to build a FIPS

compliant random generator according to the NIST SP 800-90

standards. Finally, we show an example validation of the

SRAM PUF based entropy source using the NIST statistical test

suite on measurements obtained from an actual microcontroller

device.

www.embedded-world.eu

II. THE SRAM PUF

Due to deep submicron manufacturing process variations, every

transistor in an Integrated Circuit (IC) has slightly different

physical properties. These lead to small but measurable

differences in terms of electronic properties such as transistor

threshold voltage and gain factor. Since these process variations

are not controllable during manufacturing, these physical

device properties cannot be copied or cloned. Threshold

voltages are susceptible to environmental conditions such as

temperature so their values cannot be used directly as unique

secret keys or identifiers.

The PUF behavior of an SRAM cell, on the other hand, depends

on the difference of the threshold voltages of its transistors.

Small differences will be amplified and push the SRAM cell

into one of two stable states. Its PUF behavior is therefore much

more stable than the underlying threshold voltages, making it

the most straightforward and stable way to use the threshold

voltages to build an identifier.

A. SRAM PUF Behavior

An SRAM memory consists of an array of SRAM cells. Each

SRAM cell consists of two cross-coupled inverters that each are

built up by a p- and n-MOS transistor, see Figure 1. When

power is applied to an SRAM cell, its logical power-up state is

mainly determined by the relation between the threshold

voltages of the p-MOS transistors in the invertors. The

transistor with the smallest threshold voltage will start

conducting first and determines the outcome, a logical ‘0’ or

‘1’.

Figure 1: Schematic of 6-transitor SRAM cell. The left inverter consists
of PMOS transistor PL and NMOS transistor NL and is cross-coupled
with right inverter consisting of transistors PR and NR. Transistors AXL
and AXR are access transistors for read and write operations. The
SRAM cell is accessed through word line WL and bit line BL or
complementary bit line BLC.

It turns out that most SRAM cells have their own preferred state

every time the SRAM is powered resulting from the random

differences in the transistor threshold voltages. This preference

is independent from the preference of the neighboring cells and

independent of the location of the cell on the chip or on the

wafer.

Hence, an SRAM region yields a unique and random pattern of

0’s and 1’s that is stable for most of the bit cells.

A small fraction of the bit cells happens to have threshold

voltages in the cross-coupled inverters that are closely matched.

These cells will sometimes power up as a logical ‘0’ and

sometimes as a logical ‘1’. Hence, these bit cells produce noisy

results at every power-up.

The combined power-up pattern of an SRAM memory hence

consists of a majority of stable cells with a unique pattern and a

small fraction of noisy bit cells. An SRAM PUF response can

therefore be regarded as a “noisy fingerprint” of a device.

The amount of noise between consecutive SRAM PUF

measurements at room temperature is typically in the order of

5%, see for example Figure 2 and Figure 3. When comparing

measurements from different temperatures to a reference

measurement at room temperature, the relative noise is typically

higher and can go up to 15% at extreme temperatures. In the

measurement data depicted in Figure 2, the largest difference

compared to room temperature is still less than 11% and occurs

at +125°C. This difference needs to be error corrected by the

Fuzzy Extractor when deriving cryptographic keys from the

SRAM PUF. Various studies have investigated SRAM PUF in

more detail, see for example [23][24][25].

Figure 2: SRAM PUF measurements from 30 devices in UMC 65nm
technology node, depicting the Within-Class Hamming Distance
(WCHD) between measurements of the same device at different
temperatures and a reference measurement at room temperature
(first measurement at 25°C). At every temperature, 50 measurements
were taken per device. WCHD levels at room temperature are
between 4% and 6%. At more extreme temperatures the WCHD
compared to room temperature increases up to 11%.

When using the SRAM PUF to generate randomness entropy,

we are not interested in the Hamming Distance with respect to

a reference at room temperature, but rather in the PUF noise

when comparing measurements to a reference of the same

device at the same temperature. This will give an indication of

the smallest amount of noise that can be expected and hence

provides the minimum amount of noise entropy. Figure 3 shows

the SRAM PUF noise levels at different temperatures.

Figure 3: SRAM PUF noise measurements from 30 devices in UMC
65nm technology node, depicting the Within-Class Hamming Distance
(WCHD) between measurements of a device and a reference
measurement at the same temperature (first measurement at each
temperature). At every temperature, 50 measurements were taken
per device. SRAM PUF noise levels are relatively stable over
temperature. Lowest noise levels occur at the lowest temperature.

It is observed that the noise levels are relatively stable over

temperature. At -55°C SRAM PUF we see the lowest noise

levels of the temperature range, which are between 3.5% and

5.5%. These are only slightly lower than the noise levels

observed at room temperature (+25°C), which are between 4%

and 6%.

B. Key Generation and Storage Based on SRAM PUF

Keys that are derived from the SRAM PUF are not stored ‘on

the chip’ but they are extracted ‘from the chip’, only when they

are needed. In that way they are only present in the chip during

a very short time window. When the SRAM is not powered

there is no key present on the chip making the SRAM PUF keys

very difficult to attack.

How does it work? To derive a cryptographic key from a PUF,

a so-called Fuzzy Extractor [16][17][18] is needed to turn the

slightly noisy PUF response of the chip into a reliable root key.

The two main algorithms inside a Fuzzy Extractor are:

1. Error Correction: to correct the noise on a measured

PUF response by applying error correcting codes. So-

called helper data is stored to provide additional

information for the error correction. It is constructed

in such a way that it does not leak any information on

the reconstructed root key. The error correction

guarantees that under any circumstances that influence

the noise (such as extreme temperatures), the device’s

root key can be reconstructed reliably.

2. Privacy Amplification: to guarantee full entropy of the

output root key, despite the information present in the

helper data. After error correction the data is

compressed into the actual root key, e.g., of 256 bits.

Whenever the root key is needed by the system, the Fuzzy

Extractor runs its reconstruction operation by reading the

SRAM power-up values and the helper data generated at an

initial one-time enrollment step. There is no need to store this

root key in any form of non-volatile memory. This means that

when the device is powered off, no secret key can be found in

any memory; in effect, the root key is “invisible” to hackers. A

whole tree of cryptographic keys (starting from the PUF root

key) can be (re-)created without storing them in a memory,

removing the need for a device to have any physical form of

secure storage. More details about the basic functionality of

SRAM PUF can be found in “SRAM PUF: The Secure Silicon

Fingerprint” [6].

C. Randomness Generation Based on SRAM PUF

Besides extracting keys from the SRAM PUF responses, the

SRAM PUF responses can also be used as a source of non-

repeating true randomness. The randomness comes from the

small percentage of bit cells in an SRAM memory, whose

transistor threshold voltages happen to match quite closely.

These bit-cells do not have a strong preferred power-up state

but tend to power-up randomly: sometimes as a logic ‘0’ and

sometimes as a logical ‘1’. The stability of PUF response bits

from an SRAM memory can be investigated by analyzing their

so-called one-probability.

One-probability is defined as the probability that an SRAM cell

powers up in the logical “1” state. As can be seen from the

probability density histogram in Figure 4, most SRAM PUF

cells have a one-probability value either close to 0.0 or close to

1.0., which respectively indicates a stable 0-producing cell or a

stable 1-producing cell. Only relatively few cells will have a

one-probability not close to either 0.0 or 1.0, indicating an

unstable cell, i.e., a cell for which the response value resulting

from a power-up is not relatively certain upfront, and which

hence has some level of unpredictability to it. A small (but non-

negligible) minority of cells will have a one-probability close

to 0.5, which indicates a fully unpredictable response behavior.

The unstable cells are responsible for the so-called noisy

behavior of the SRAM PUF, generating fresh entropy upon

every power-up of the SRAM memory. This entropy is also

called the noise entropy of the PUF.

Analyses of actual SRAM PUF measurements show that about

5% of the cells will have a noise min-entropy contribution of

more than 0.5 bit/cell. As a consequence, for an SRAM PUF

which contains a sufficiently large number of individual cells,

there will always be a considerable number of cells which

consistently generate noise entropy (e.g., in an SRAM array of

1000 cells, there will be on average about 50 cells that generate

a significant level of noise min-entropy on every power-up).

This noise entropy provides the basis for using the SRAM PUF

www.embedded-world.eu

as a noise source in a FIPS compliant random number

generator.

Figure 4: One-probability distribution of a 1KB SRAM array measured
1000 times at room temperature. Most of the bit cells power up as a
very stable digital 0 or 1 value (resulting in the peaks in the above
histogram). A minority of bit cells has a more random power-up
behavior and contribute to the noise entropy.

Considering the typical one-probabilities as observed in SRAM

PUF responses, we can say that the noise entropy contained in

them is sparse and diluted:

• The total noise entropy produced by an SRAM PUF

array will mostly be generated by a minority of its cells

that contribute a relatively high entropy rate. These

few entropy- contributing cells are distributed sparsely

over random positions in the SRAM PUF array.

• The total amount of noise entropy produced by an

SRAM PUF array will be relatively low compared to

the size of the array in terms of number of cells. The

expected (averaged) entropy contribution per cell will

hence be rather low, or in other words the noise

entropy in an SRAM PUF response is diluted.

Because of these properties, we propose to use an additional

entropy concentration function on the SRAM PUF output such

that there is a better fit with the NIST entropy source model, as

is explained in the next section.

III. FIPS COMPLIANT RANDOMNESS GENERATION

FIPS 140-3 compliant security modules need to have a random

number generator that is compliant to the NIST SP800-90

specifications [12][13][14]. According to these specifications,

an approved random number generator consists of a

Deterministic Random Bit Generator (DRBG) that is requesting

entropy from a randomness source such as a NIST approved

Entropy Source, see the setup in Figure 5.

In the following subsection we will explain how an SRAM PUF

can be used to create an Approved Entropy Source according to

the NIST SP800-90B recommendations.

Figure 5: Schematic architecture of an approved Random Number
Generator construction according to the NIST SP800-90C specification
[14].

A. Entropy Source

Guidelines for NIST approved entropy sources are given in the

NIST SP800-90B specification [13]. There an entropy source is

considered to include the components as depicted in Figure 6.

It comprises a Digital Noise Source, whose output is Raw data

that is being tested with a Health Test function. Before the Raw

data is output, it is optionally conditioned. The Digital Noise

Source consists of an Analog Noise Source whose output is

digitized using a Digitization function.

Figure 6: Entropy Source Model according to NIST SP800-90B
specification [13]. Texts between >>marks<< indicate the proposed
implementation of components for an SRAM PUF based entropy
source

.

1) Analog Noise Source

To create an SRAM PUF based entropy source, we can use the

power-up state of SRAM as the “Analog Noise Source”. Even

though the direct evaluation of the SRAM PUF is already in a

digital (binary) form, an additional “digitization” step is

proposed to transform the noise source output into digital noise

samples that have the required properties such as a guaranteed

lower-bound on the min-entropy.

2) Digitization

The reason for this proposed digitization step is the fact that the

noise entropy present in the binary PUF is sparse and diluted,

as was discussed in the previous section. The NIST SP800-90B

specification requires that each individual sample produced by

the noise source should have a guaranteed lower-bound for its

(min)-entropy. If the noise source produces (occasional)

samples with very low entropy, it will fail some of the statistical

validation checks defined by the specification, even if the total

collection of produced samples as a whole contains sufficient

entropy for the intended application. Using SRAM PUF bits

directly as noise samples is hence suboptimal because many bit

locations do not contain any noise entropy at all (due to the

sparseness).

We propose to implement an Entropy Concentration function

as “digitization” step, which ensures that the sparse and diluted

noise entropy in the SRAM PUF bits is transformed into a

smaller set of output bits in which the noise entropy is

concentrated. This entropy concentration function should not

obfuscate the statistical properties of the physical behavior on

which the noise source relies as the origin of the noise entropy.

This rules out the use of, e.g., cryptographic hash functions, and

most other kinds of cryptographic operations, which would

typically be used to extract values with a high entropy density

from sources with a low entropy rate.

A simple binary matrix multiplication can do the required job.

The matrix can be designed with the property that when used in

the binary multiplication, it will mix a large number of input

bits into a small number of output bits, while preserving to a

large extent the entropy of the input. This guarantees that noise

in the sparsely distributed noisy input bits gets concentrated into

a smaller number of output bits. Moreover, such a matrix

multiplication is a simple linear transform which largely retains

the statistical properties of the noise source, allowing for

meaningful testing and validation of the noise source samples.

An example of a suitable matrix with the desired properties, is

the parity-check matrix of a Reed-Muller code.

3) Health Tests

The output of the Digital Noise Source, the Raw Data, needs to

be tested by means of Health Tests to detect deviations from

intended behavior. The goal of these tests is to ensure that the

noise source operates as expected (under potentially varying

external conditions) and that critical failures of entropy

generation are detected. Health tests need to be tailored to the

specific noise source and are typically technology specific.

They are expected to raise an alarm when there is a significant

decrease in the entropy of its outputs, when noise source

failures occur, or when underlying hardware fails.

The NIST specification [13] requires that both startup tests and

continuous tests are included. Whereas startup tests run after

powering up or rebooting to verify that the noise source

components are operational, continuous tests need to run when

the noise source is operating to detect failures while the noise

source produces outputs. An SRAM PUF based random source

does not continuously produce random outputs, but instead

delivers entropy at power-up of the SRAM memory. So that is

the moment at which the “continuous” tests as described by

NIST need to be run.

Two statistical tests on the Raw Data that are mandatory

according to NIST SP800-90B are:

• Repetition Count test: tests for too long sequences of

repeating noise sample values,

• Adaptive Proportion test: tests for a too high

occurrence of a noise sample value in a fixed-length

window.

Both these tests as described in the specification can be applied

directly to the Raw Data as produced by the SRAM PUF based

noise source. Additional vendor-defined tests are recommended

to test technology specific failure modes which are not

sufficiently covered by the two mandatory tests.

In the case of an SRAM PUF based noise source we propose to

add tests on the actual PUF response values before the

digitization step, to increase the sensitivity of detecting

problems. The Repetition Count and Adaptive Proportion tests

can (with adapted parameters) be extended to be run on PUF

response values directly.

Additionally, to detect reuse of SRAM PUF values without

proper re-powering in between (a very specific SRAM PUF

failure mode), we propose to add an SRAM state test. After

using the SRAM PUF values for harvesting entropy, a pre-

defined value is written in a pre-defined part of the SRAM.

When entropy is requested, it is first checked whether the pre-

defined part of SRAM contains the pre-defined value

(indicating it has already been used) or not. This way re-use

without proper repowering can be detected and avoided.

4) Conditioning

The conditioning function is optional according to the NIST

specification. It can be used to reduce bias and/or to increase

the entropy rate of the output bits. However, when used in

combination with a DRBG mechanism which anyway

cryptographically compresses the entropy input upon

instantiation, a conditioning function in the entropy source is

generally not needed.

5) Interfaces

At least the following conceptual interface functions should be

implemented in an approved entropy source:

• GetEntropy: an interface over which the consuming

DRBG can request entropy and in return obtain a

bitstring containing at least the requested amount of

entropy. After checking that the SRAM PUF values

have not been used before (SRAM state test), the PUF

www.embedded-world.eu

response values are passed through the digitization

function. After applying the health tests as described

in the previous subsection, the Raw Data is provided

via the output to the calling DRBG. To prevent

accidental reuse or disclosure of SRAM PUF response

values, the SRAM can be zeroized.

• GetNoise: an interface to obtain raw, digitized outputs

from the noise source for use in validation testing or

external health testing. This function follows the same

procedure as the GetEntropy function, but without

executing the health tests. The function should be

made available in a special test mode and not be

callable in a regular operational mode. Calling

GetNoise prohibits any further calls to GetEntropy,

until the SRAM (or the device) is properly repowered.

• HealthTest: an interface over which the internal health

tests can be triggered. This function only outputs an

okay or not-okay signal to the calling application,

without actually outputting any random data. The

GetEntropy function can still be called after calling

this function as it does not destroy the noise entropy in

the SRAM (i.e., no zeroization is applied).

B. DRBG

The Deterministic Random Bit Generator (DRBG) is the main

mechanism that is called by the application to deliver random

data. Approved cryptographic mechanisms are described in the

NIST SP800-90A specification [12]. The implementation of a

DRBG according to this specification does not depend on the

specifics of the noise source used. Hence there are no specific

mechanisms that need to be implemented related to our SRAM

PUF based noise source. The functional model for a DRBG as

described by NIST is depicted in Figure 7.

Figure 7: DRBG Functional Model, as taken from the NIST SP800-90A
specification [12].

A consuming application requests random bits by calling the

Generate Function. Application specific input data can be

mixed in via an optional Additional Input if desired. The

Generate Function uses a NIST approved pseudo-random

function of the proper security strength for updating its state and

generating output data. Correct implementation of the used

pseudo-random function can be validated and certified via the

NIST CAVP program [20].

Before being able to call the Generate Function, the initial state

first needs to be created by calling the Instantiate Function. The

Instantiate Function brings in true randomness from the

Entropy Source and mixes that with an optional Personalization

String input provided by the application.

The NIST specification requires the presence of an

Uninstantiate Function to destroy the Internal State in case of

certain security related events such as detected breaches.

Furthermore, there needs to be a Test function to test the correct

operation of the DRBG, which can be called at any time and is

automatically triggered upon initial use of the DRBG.

The Reseed Function is optionally implemented to have the

possibility to provide additional entropy that will securely

update the internal state of the DRBG. This function could be

used to restore secrecy of the internal state when full secrecy of

the internal state cannot be guaranteed anymore. The NIST

specifications prescribe that a seed has a limited lifetime. In

particular, the maximum number of requests that can be served

from a single seed is 248 for DRBGs that use a SHA or AES

based pseudo-random function. An internal counter is keeping

track of the actual number of requests that have been handled

and the DRBG shall indicate that a reseed is required when the

maximum number of requests is passed.

1) Special Considerations

Two limitations when working with an SRAM PUF based

entropy source in this respect are:

1. After the DRBG has been uninstantiated, a repower of

the SRAM (or the device) is needed before a new

instantiation can take place, to generate fresh noise

entropy for the noise source.

2. A reseed can only be implemented from the SRAM

PUF based noise source when the used SRAM

memory has a dedicated SRAM power switch. In case

the SRAM is powered along with the rest of the

device, a reseed cannot be implemented from the same

entropy.

In practice, the reseed limitation is not an issue as typically

multiple random bytes are requested at once (per request) and

248 requests can be served without reseeding. This huge number

of requests is not even reached within 100 years of device

operation when the DRBG would be called once every

millisecond.

IV. ENTROPY SOURCE VALIDATION

The NIST SP800-90B specification [13] describes how entropy

sources can be validated with statistical tests, to assure that the

relevant requirements of the specification are met. This is a

procedure that is typically executed by an accredited laboratory.

The entropy source vendor needs to provide an entropy

estimate, which is based on its own model and analysis of the

noise source. In this section we provide an example on how this

is done.

For the SRAM PUF noise source, we can use our probabilistic

model of an SRAM PUF [21] to provide an initial entropy

estimate. The model is tuned to an actual device

implementation by measuring the SRAM PUF noise and bias

(see section “The SRAM PUF”) from a platform on which we

want to implement our random number generator.

In this example case, we use measurements from a Texas

Instruments TM4C123GH6PM microcontroller. At a constant

temperature we obtain 1000 PUF measurements of an 8

kilobyte SRAM region by repeating the following procedure

1000 times:

1. power off the board,

2. wait 1 second,

3. power on the board

4. read out SRAM contents and write it to a file on the

controlling PC.

The PC is used to program the microcontroller and to retrieve

measurement data over the UART/USB interface. The

measured PUF noise and one-probability distribution (before

digitization) are used as input to our PUF model to compute an

entropy estimate.

For the digitization step we implement an entropy concentration

function in the form of a matrix multiplication with the

transposed parity check matrix of a Reed-Muller(5,8) error

correcting code. With this matrix multiplication we transform

every block of 256 input bits from the SRAM PUF into 37

output bits that serve as raw samples of the noise source. After

applying this entropy concentration function, the one-

probability distribution of the output bits looks as is depicted in

Figure 8. The figure shows that after applying the

transformation, most of the bits have a one-probability that is

close to 0.5. Compare that to the original one-probability

distribution that was presented in Figure 4.

Using our PUF model, we find a lower-bound entropy estimate

of 0.37 bits per raw noise sample, where a sample equals a

single output bit after applying the entropy concentration

function. This value is used as the “submitter entropy” value for

the statistical entropy validation in the next stage.

Next, we run the NIST-SP800-90B Entropy Assessment test

suite [22]. This test suite is used to validate with statistical tests,

which do not have knowledge of the specific noise source

model, that there are no statistical indications of any entropy

issues. For the statistical tests, two datasets are created based on

the measured SRAM PUF data:

1. A sequential dataset, where we concatenate all bits of

the measurements after applying the entropy

concentration function,

2. A restart dataset, where we use exactly 1000 output

bits (after applying the entropy concentration

function) for each of the 1000 measurements.

Figure 8: One-probability distribution (histogram) of SRAM PUF data
after applying the entropy concentration function based on a matrix
multiplication with a RM(5,8) parity check matrix.

We consider the SRAM PUF based generated noise samples to

be non-i.i.d., meaning not identically and independently

distributed because of the following reasons:

- The behavior of the individual SRAM PUF cells is by

its nature non-identical, since each cell has its own

individual distribution described by its one-

probability,

- The entropy concentrating transform generates noise

samples from SRAM PUF cell evaluations in a manner

which is not fully independent.

For this reason, we run the non-i.i.d. entropy assessment flow

of the NIST-SP800-90B test suite [22] on the sequential dataset.

As a result we find an estimated entropy of 0.84 bits per sample.

We run the entropy assessment restart test [22] on our restart

dataset of 1000 times 1000 samples, which are used in the test

as a 1000 by 1000 matrix of output samples (bits). As additional

input we need to provide an initial entropy estimate, which is

the minimum of our model-based submitter entropy and the

entropy estimate created by the non-i.i.d. entropy assessment.

In our case, the submitter entropy was the lowest and hence the

value of 0.37 bits per sample is used as initial entropy estimate

input. The restart tests verify the following:

1. A restart sanity check: check that the frequency of the

most common value in the rows and the columns of

the matrix is not significantly larger than the expected

value, given the initial entropy estimate. This sanity

check passes with our restart dataset.

2. A restart validation check: check that the entropy

estimates over the columns and over the rows of the

matrix is at least half of the initial entropy estimate.

This validation check passes as the test suite estimates

www.embedded-world.eu

a row entropy of 0.81 bits per sample and a column

entropy of 0.84 bits per sample, which are both higher

than half of the submitter entropy of 0.37 bits per

sample.

With all tests passing we find a minimum noise entropy

estimate of 0.37 bits per sample. This is the value that we need

to consider when feeding noise into the DRBG on this platform.

It means in practice that for providing 256 bits of noise entropy

into our DRBG, we need to take at least 256/0.37=692 bits of

entropy source output data. Given the efficiency of our entropy

concentration function, this requires at least 692/37*256 ≈ 4787

bits (~600 Bytes) of SRAM PUF data.

It should be noted that the above entropy assessment serves

merely as an example. In a proper entropy source validation run,

we would need to repeat the analysis over multiple devices and

focus on the worst-case SRAM PUF noise condition, which is

typically at the lowest operating temperature. This will result in

an implementation that uses slightly more SRAM PUF data

than the estimate provided in the above example. Nonetheless,

the example shows that constructing an SRAM PUF based

entropy source that fulfills the NIST SP800-90 criteria is

feasible.

V. CONCLUSIONS

In this paper we have shown how a NIST SP800-90 compliant

random number generator can be constructed with an entropy

source that is based on using uninitialized SRAM memory.

Even though the NIST specifications seem to be written with a

continuous or “temporal” noise source model in mind, we have

shown how to apply the specifications to our “spatial” SRAM

PUF noise source. In this spatial model, the entropy is not

released over time but instead generated at one specific moment

in time at power up of the SRAM. The number of samples that

can be produced per power-up is limited by the SRAM size,

which is a property that needs to be taken into account by the

implementation of the random number generator. Another

specific aspect of using the SRAM PUF as entropy noise source

is to deal with the sparse and diluted characteristics of the

SRAM PUF noise. An entropy concentration function has been

proposed as part of the digitization step to improve the

properties of the Raw Data output. With this addition we have

shown that our SRAM PUF based noise source can successfully

pass the NIST entropy validation tests on an actual

microcontroller device.

With the construction presented in this paper, we have shown

how SRAM PUF technology can be leveraged to instantiate a

strong RNG on almost any microcontroller, hence providing a

universal solution for strong randomness in the Internet of

Things. Intrinsic ID has created an embedded software product

called Zign RNG [19] around this proposition. It is delivered as

a compiled library for a specific CPU and comes with

documentation including datasheet, API reference manual and

entropy source validation guide for use in FIPS certification

projects. The implemented cryptographic algorithms in the

DRBG have been certified using the NIST CAVP program [26].

REFERENCES

[1] Dan Petro - Bishop Fox, Blog August 05, 2021: “You’re Doing IoT
RNG”, https://bishopfox.com/blog/youre-doing-iot-rng

[2] IoT Analytics – “State of IoT 2021: Number of connected IoT devices
growing 9% to 12.3 billion globally, cellular IoT now surpassing 2
billion”, https://iot-analytics.com/number-connected-iot-devices/

[3] GSA white paper: “Preventing a $500 Attack Destroying your IoT
Devices” https://www.intrinsic-id.com/resources/white-papers/landing-
page-white-paper-preventing-a-500-attack/

[4] J.P. Aumasson, “Serious cryptography: a practical introduction to modern
encryption”. No Starch Press, Inc., 2018.

[5] Intrinsic ID Whitepaper, “Protecting the IoT with Invisible Keys IoT
Security with Unclonable Identities”, https://www.intrinsic-
id.com/resources/white-papers/protecting-iot-invisible-keys-white-
paper/ .

[6] Intrinsic ID Whitepaper, “SRAM PUF: The Secure Silicon Fingerprint”,
https://www.intrinsic-id.com/resources/white-papers/white-paper-sram-
puf-secure-silicon-fingerprint/

[7] G.J. Schrijen, C. Garlati, “Physical Unclonable Functions to the Rescue,
A new way to establish trust in silicon”, Embedded World 2018.

[8] ArsTechnica – “PS3 hacked through poor cryptography implementation“,
https://arstechnica.com/gaming/2010/12/ps3-hacked-through-poor-
implementation-of-cryptography/

[9] B.Buchanan on Medium.com, “Not Playing Randomly: The Sony PS3
and Bitcoin Crypto Hacks”, https://medium.com/asecuritysite-when-bob-
met-alice/not-playing-randomly-the-sony-ps3-and-bitcoin-crypto-hacks-
c1fe92bea9bc

[10] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman, “Mining
your Ps and Qs: detection of widespread weak keys in network device,”
Proceedings of the 21st USENIX Security Symposium, August 2012.

[11] Ecommerce Times article, “Android Flaw Could Empty Bitcoin Wallets”,
https://www.ecommercetimes.com/story/android-flaw-could-empty-
bitcoin-wallets-78702.html

[12] NIST SP 800-90A Rev.1, “Recommendation for Random Number
Generation Using Deterministic Random Bit Generators”,
https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final

[13] NIST SP 800-90B, “Recommendation for the Entropy Sources Used for
Random Bit Generation”, https://csrc.nist.gov/publications/detail/sp/800-
90b/final

[14] NIST SP 800-90C, “Recommendation for Random Bit Generator (RBG)
Constructions”, https://csrc.nist.gov/publications/detail/sp/800-90c/draft

[15] FIPS 140-3, “Security Requirements for Cryptographic Modules”,
https://csrc.nist.gov/publications/detail/fips/140/3/final

[16] Y. Dodis, L. Reyzin, A. Smith – “Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data”, In: Cachin, C.,
Camenisch, J. (eds.) EUROCRYPT’04. LNCS, vol. 3027, pp. 523–540.
Springer-Verlag, Heidelberg (2004)

[17] C. Bösch, J. Guajardo, A.R. Sadeghi, J. Shokrollahi, P. Tuyls – “Efficient
helperdata key extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.)
CHES’08. LNCS, vol. 5154, pp. 181–197. Springer-Verlag, Heidelberg
(2008)

[18] V. van der Leest, E. van der Sluis, B. Preneel – “Soft Decision Error
Correction for Compact Memory-Based PUFs using a Single
Enrollment”, CHES 2012.

[19] Intrinsic ID – Zign RNG product, https://www.intrinsic-
id.com/products/zign-rng/

[20] NIST Cryptographic Algorithm Validation Program (CAVP),
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-
program

[21] Roel Maes – “An accurate probabilistic reliability model for silicon
PUFs”, CHES 2013, https://eprint.iacr.org/2013/376.pdf

https://bishopfox.com/blog/youre-doing-iot-rng
https://iot-analytics.com/number-connected-iot-devices/
https://www.intrinsic-id.com/resources/white-papers/landing-page-white-paper-preventing-a-500-attack/
https://www.intrinsic-id.com/resources/white-papers/landing-page-white-paper-preventing-a-500-attack/
https://www.intrinsic-id.com/resources/white-papers/protecting-iot-invisible-keys-white-paper/
https://www.intrinsic-id.com/resources/white-papers/protecting-iot-invisible-keys-white-paper/
https://www.intrinsic-id.com/resources/white-papers/protecting-iot-invisible-keys-white-paper/
https://www.intrinsic-id.com/resources/white-papers/white-paper-sram-puf-secure-silicon-fingerprint/
https://www.intrinsic-id.com/resources/white-papers/white-paper-sram-puf-secure-silicon-fingerprint/
https://arstechnica.com/gaming/2010/12/ps3-hacked-through-poor-implementation-of-cryptography/
https://arstechnica.com/gaming/2010/12/ps3-hacked-through-poor-implementation-of-cryptography/
https://medium.com/asecuritysite-when-bob-met-alice/not-playing-randomly-the-sony-ps3-and-bitcoin-crypto-hacks-c1fe92bea9bc
https://medium.com/asecuritysite-when-bob-met-alice/not-playing-randomly-the-sony-ps3-and-bitcoin-crypto-hacks-c1fe92bea9bc
https://medium.com/asecuritysite-when-bob-met-alice/not-playing-randomly-the-sony-ps3-and-bitcoin-crypto-hacks-c1fe92bea9bc
https://www.ecommercetimes.com/story/android-flaw-could-empty-bitcoin-wallets-78702.html
https://www.ecommercetimes.com/story/android-flaw-could-empty-bitcoin-wallets-78702.html
https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://csrc.nist.gov/publications/detail/sp/800-90c/draft
https://csrc.nist.gov/publications/detail/fips/140/3/final
https://www.intrinsic-id.com/products/zign-rng/
https://www.intrinsic-id.com/products/zign-rng/
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://eprint.iacr.org/2013/376.pdf

[22] NIST SP800-90B Entropy Assessment,
https://github.com/usnistgov/SP800-90B_EntropyAssessment

[23] Katzenbeisser, S., Kocabaş, Ü., Rožić, V., Sadeghi, A. R., Verbauwhede,
I., & Wachsmann, C. (2012). PUFs: Myth, fact or busted? A security
evaluation of Physically Unclonable Functions (PUFs) cast in silicon.
Lecture Notes in Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 7428 LNCS,
283–301. https://doi.org/10.1007/978-3-642-33027-8_17

[24] Schrijen, G. J., & Van Der Leest, V. (2012). Comparative analysis of
SRAM memories used as PUF primitives. Proceedings -Design,

Automation and Test in Europe, DATE, 1319–1324.
https://doi.org/10.1109/date.2012.6176696

[25] Claes, M., Van Der Leest, V., & Braeken, A. (2012). Comparison of
SRAM and FF PUF in 65nm technology. Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 7161 LNCS, 47–64.
https://doi.org/10.1007/978-3-642-29615-4_5

[26] NIST CAVP certification results for Intrinsic ID’s Zign RNG product,
validation number A1993, https://csrc.nist.gov/projects/cryptographic-
algorithm-validation-program/details?product=14480

https://github.com/usnistgov/SP800-90B_EntropyAssessment
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14480
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14480

