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Abstract— With the rapid proliferation of Internet of 

Things (IoT) devices, it is vital to protect these devices and 

their communications. This requires implementing 

cryptographic systems suitable for low-cost devices, which 

include a Random Number Generator (RNG). 

Cryptographic protocols need random numbers, as certain 

inputs need to be unpredictable for attackers. The proper 

way to generate those is to first generate a truly random 

seed from a non-deterministic physical source. Then this 

seed is used as input for a deterministic algorithm that turns 

it into a large stream of random bits.  

A recent study from Bishop Fox [1] shows a critical 

vulnerability in RNGs used in billions of IoT devices, where 

the physical source fails to generate sufficient entropy. This 

compromises the RNG and puts the devices at risk of attack. 

This paper details a physical entropy source for creating a 

strong RNG solution that solves this problem, even on 

existing IoT devices.  

When a chip is powered, its SRAM fills with a random 

pattern of 0s and 1s, which is highly unique for that chip 

and can be used as a device identifier (also known as a 

Physical Unclonable Function). However, between every 

powerup there also is a certain number of unstable bits in 

this unique pattern. A truly random seed for an RNG is 

created by harvesting this noise, without requiring changes 

to existing hardware. Given the wide availability of SRAM 

this solution can be added via software at low cost, making 

it perfectly suited for the IoT. 
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I.  INTRODUCTION  

It is estimated that by 2025, there will be more than 27 billion 

devices connected to the Internet [2]. By interconnecting 

billions of devices on the internet of things (IoT), the world has 

become exposed to a plethora of security-related threats that 

never existed before. While companies struggle to recover from 

the damage caused by today’s cyber-attacks, attackers are 

fabricating new low-cost attacks using increasingly cheaper 

tools to attack IoT devices. The need for more security is clear. 

A recent publication [3] from the Global Semiconductor 

Alliance (GSA) outlines the concept of a security subsystem, 

integrated into a larger microcontroller or system-on-chip 

(SoC) controller, which in turn is at the heart of an IoT device. 

Applications use this security subsystem for services such as 

encryption of sensitive data, device authentication and setting 

up secure connections to other devices.  

 

To provide support for such applications, security subsystems 

typically implement cryptographic functions for encryption, 

message authentication and digital signatures. The proper use 

of these functions requires a unique set of cryptographic keys 

that are accessible only within the security subsystem and hence 

stored securely from outside observers. Additionally, 

unpredictable random values are needed for various 

cryptographic protocols that the security subsystem is handling.  

 

A. Secure Key Storage 

Cryptographic keys are essential to the use of cryptography. It 

was Auguste Kerckhoff who stated already in the 19th century, 

that the security of a cipher should rely only on the secrecy of 

the key and not on the secrecy of the cipher[4]. This principle 

has become known as Kerckhoff’s Principle and is the basis of 

all modern-day cryptography.  

The fact that security relies totally on the security of the used 

cryptographic keys has an important implication in practice. It 

is of vital importance to guarantee that the cryptographic keys 

used by a security subsystem are securely stored and only 

accessible within the security subsystem. They need to be 

guarded against readout, alteration and copying by attackers. 

Traditional methods for secure key storage rely on storing a root 

cryptographic key in non-volatile memory such as embedded 

flash memory or one-time programmable (OTP) memory. 

However, these methods have serious disadvantages in terms of 

security, cost, reliability, and flexibility. A novel approach 



avoiding these downsides is the use of an SRAM Physical 

Unclonable Function (PUF), as is described in several 

publications [5][7]. 

 

B. Random Number Generation 

Besides relying on a well-protected secret key, many 

cryptographic protocols also depend on the availability of 

unpredictable random numbers. They are for example needed 

in encryption schemes as initialization vector, for key 

establishment protocols, and for the generation of secret keys, 

PINs and passwords. A bad random number generator would 

lead to predictability in the generated keys, which would 

directly reduce the security level of a cryptographic mechanism 

using such keys and hence give an undesirable advantage to an 

attacker. 

 

1) Problems with random numbers in practice 

Over the past years there have been several examples where bad 

quality random numbers have resulted in serious security 

problems.  

 

In 2010, a group of hackers called “fail0ver” discovered a 

serious flaw in the use of random numbers for digitally signing 

the Sony PlayStation 3 (PS3) software [8][9]. In the Elliptic-

Curve Digital Signature Algorithm (ECDSA) it is required that 

for every signature that you generate, a new random nonce 

value (the “k” parameter) is used. Failing to do so can be 

catastrophic, as the private signature key can be directly derived 

from only 2 signed messages that use the same nonce. 

Unfortunately, that is exactly the flaw in Sony’s 

implementation; they signed their software with a constant 

nonce. Hence, with only two signed firmware images, the 

hackers were able to retrieve Sony’s signing key and they could 

correctly sign their own modified software to take over the 

device. 

 

A related problem of insufficient randomness in the application 

of ECDSA signatures was found in 2013 in Android 

implementations of bit-coin wallets[11]. Due to issues with the 

underlying random generator in the java-based random 

generator of Android, (pseudo) random sequences were 

occasionally repeating. This led to ECDSA signatures on 

bitcoin transactions with the same nonce values, leading to 

compromised signature keys and theft of money.  

 

The security of the RSA algorithm relies on the difficulty of 

factoring large integers. RSA public keys are constructed by 

multiplying two large prime numbers. These prime factors form 

the private key of the crypto system and need to be of large 

enough size and randomly generated in order to be 

unpredictable to an attacker. In 2012 researchers discovered 

issues with the RSA keys of thousands of Internet connected 

devices [10]. It turned out that these devices have public keys 

that share the same prime factor as part of their public key as 

other devices. Whereas it is computationally infeasible to factor 

a large composite number consisting of two random and 

sufficiently large prime numbers, feasibility dramatically 

increases when two RSA keys share a common prime factor 

because more efficient algorithms exist to compute the greatest 

common divisor of a product. Hence, the feasibility of 

recovering the prime factors in RSA keys drastically increases 

when RSA keys share common prime factors, and this caused 

an immediate problem for the security of the discovered devices 

relying on such weak keys. The underlying problem of these 

weak RSA keys is the fact that they had been generated using 

weak random generators on those devices.  

 

More recently, a study of security company Bishop Fox showed 

issues with the use of random generators in IoT devices[1], 

putting billions of devices at risk. The researchers found that in 

many cases the main microcontroller in an IoT device does have 

a built-in true random number generator, but that it often has 

shortcomings that the developer is not aware of. For example, 

hardware random number generators cannot always produce 

large streams of random numbers at high speed and will 

indicate when they fail to do so. However, such return codes 

need to be checked and software must take care of proper 

handling. Unfortunately, the researchers found several cases of 

widely re-used code in embedded operating systems where 

return codes are not checked at all. Furthermore, some hardware 

random generators have certain prescriptions of use which are 

often overlooked or turn out to have imperfections in the 

entropy that they produce.  

 

2) The right approach 

The proper way of establishing a cryptographically secure 

random number generator on embedded devices is to start with 

a true-random entropy source in the hardware of a device that 

seeds a deterministic random bit generator (DRBG). The 

entropy source must have known randomness properties such 

that a guaranteed full entropy seed can be extracted to initialize 

the DRBG. Furthermore, built-in health checks should run upon 

initialization to monitor entropy of the source and halt upon 

detection of deviations from the expected quality. The DRBG 

produces large streams of random numbers to calling 

applications and will trigger a reseed from the entropy source 

after a pre-described number of output bits. Such an approach 

is documented in the NIST SP 800-90 standards [12][13][14]. 

Following these standards is a requirement for devices that 

claim FIPS compliance [15].  

 

C. Outline 

In the remainder of this paper, we describe how SRAM based 

Physical Unclonable Functions (PUFs) can be used to build a 

strong cryptographic random number generator on embedded 

devices. We first describe the properties of SRAM PUFs and 

how they can be used as a source of true randomness. Then we 

explain how to use an SRAM PUF source to build a FIPS 

compliant random generator according to the NIST SP 800-90 

standards. Finally, we show an example validation of the 

SRAM PUF based entropy source using the NIST statistical test 

suite on measurements obtained from an actual microcontroller 

device. 
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II. THE SRAM PUF 

Due to deep submicron manufacturing process variations, every 

transistor in an Integrated Circuit (IC) has slightly different 

physical properties. These lead to small but measurable 

differences in terms of electronic properties such as transistor 

threshold voltage and gain factor. Since these process variations 

are not controllable during manufacturing, these physical 

device properties cannot be copied or cloned. Threshold 

voltages are susceptible to environmental conditions such as 

temperature so their values cannot be used directly as unique 

secret keys or identifiers. 

The PUF behavior of an SRAM cell, on the other hand, depends 

on the difference of the threshold voltages of its transistors. 

Small differences will be amplified and push the SRAM cell 

into one of two stable states. Its PUF behavior is therefore much 

more stable than the underlying threshold voltages, making it 

the most straightforward and stable way to use the threshold 

voltages to build an identifier. 

 

A. SRAM PUF Behavior 

An SRAM memory consists of an array of SRAM cells. Each 

SRAM cell consists of two cross-coupled inverters that each are 

built up by a p- and n-MOS transistor, see Figure 1. When 

power is applied to an SRAM cell, its logical power-up state is 

mainly determined by the relation between the threshold 

voltages of the p-MOS transistors in the invertors. The 

transistor with the smallest threshold voltage will start 

conducting first and determines the outcome, a logical ‘0’ or 

‘1’. 

 

 
Figure 1: Schematic of 6-transitor SRAM cell. The left inverter consists 
of PMOS transistor PL and NMOS transistor NL and is cross-coupled 
with right inverter consisting of transistors PR and NR. Transistors AXL 
and AXR are access transistors for read and write operations. The 
SRAM cell is accessed through word line WL and bit line BL or 
complementary bit line BLC. 

It turns out that most SRAM cells have their own preferred state 

every time the SRAM is powered resulting from the random 

differences in the transistor threshold voltages. This preference 

is independent from the preference of the neighboring cells and 

independent of the location of the cell on the chip or on the 

wafer. 

Hence, an SRAM region yields a unique and random pattern of 

0’s and 1’s that is stable for most of the bit cells. 

A small fraction of the bit cells happens to have threshold 

voltages in the cross-coupled inverters that are closely matched. 

These cells will sometimes power up as a logical ‘0’ and 

sometimes as a logical ‘1’. Hence, these bit cells produce noisy 

results at every power-up. 

The combined power-up pattern of an SRAM memory hence 

consists of a majority of stable cells with a unique pattern and a 

small fraction of noisy bit cells. An SRAM PUF response can 

therefore be regarded as a “noisy fingerprint” of a device. 

 

The amount of noise between consecutive SRAM PUF 

measurements at room temperature is typically in the order of 

5%, see for example Figure 2 and Figure 3. When comparing 

measurements from different temperatures to a reference 

measurement at room temperature, the relative noise is typically 

higher and can go up to 15% at extreme temperatures. In the 

measurement data depicted in Figure 2, the largest difference 

compared to room temperature is still less than 11% and occurs 

at +125°C. This difference needs to be error corrected by the 

Fuzzy Extractor when deriving cryptographic keys from the 

SRAM PUF. Various studies have investigated SRAM PUF in 

more detail, see for example [23][24][25].  

 

 
Figure 2: SRAM PUF measurements from 30 devices in UMC 65nm 
technology node, depicting the Within-Class Hamming Distance 
(WCHD) between measurements of the same device at different 
temperatures and a reference measurement at room temperature 
(first measurement at 25°C). At every temperature, 50 measurements 
were taken per device. WCHD levels at room temperature are 
between 4% and 6%. At more extreme temperatures the WCHD 
compared to room temperature increases up to 11%. 

 

When using the SRAM PUF to generate randomness entropy, 

we are not interested in the Hamming Distance with respect to 

a reference at room temperature, but rather in the PUF noise 

when comparing measurements to a reference of the same 

device at the same temperature. This will give an indication of 

the smallest amount of noise that can be expected and hence 

provides the minimum amount of noise entropy. Figure 3 shows 

the SRAM PUF noise levels at different temperatures. 



 

 

 

 
Figure 3: SRAM PUF noise measurements from 30 devices in UMC 
65nm technology node, depicting the Within-Class Hamming Distance 
(WCHD) between measurements of a device and a reference 
measurement at the same temperature (first measurement at each 
temperature). At every temperature, 50 measurements were taken 
per device. SRAM PUF noise levels are relatively stable over 
temperature. Lowest noise levels occur at the lowest temperature.  

 

It is observed that the noise levels are relatively stable over 

temperature. At -55°C SRAM PUF we see the lowest noise 

levels of the temperature range, which are between 3.5% and 

5.5%. These are only slightly lower than the noise levels 

observed at room temperature (+25°C), which are between 4% 

and 6%. 

 

B. Key Generation and Storage Based on SRAM PUF 

Keys that are derived from the SRAM PUF are not stored ‘on 

the chip’ but they are extracted ‘from the chip’, only when they 

are needed. In that way they are only present in the chip during 

a very short time window. When the SRAM is not powered 

there is no key present on the chip making the SRAM PUF keys 

very difficult to attack. 

 

How does it work? To derive a cryptographic key from a PUF, 

a so-called Fuzzy Extractor [16][17][18] is needed to turn the 

slightly noisy PUF response of the chip into a reliable root key. 

The two main algorithms inside a Fuzzy Extractor are: 

1. Error Correction: to correct the noise on a measured 

PUF response by applying error correcting codes. So-

called helper data is stored to provide additional 

information for the error correction. It is constructed 

in such a way that it does not leak any information on 

the reconstructed root key. The error correction 

guarantees that under any circumstances that influence 

the noise (such as extreme temperatures), the device’s 

root key can be reconstructed reliably. 

2. Privacy Amplification: to guarantee full entropy of the 

output root key, despite the information present in the 

helper data. After error correction the data is 

compressed into the actual root key, e.g., of 256 bits. 

 

Whenever the root key is needed by the system, the Fuzzy 

Extractor runs its reconstruction operation by reading the 

SRAM power-up values and the helper data generated at an 

initial one-time enrollment step. There is no need to store this 

root key in any form of non-volatile memory. This means that 

when the device is powered off, no secret key can be found in 

any memory; in effect, the root key is “invisible” to hackers. A 

whole tree of cryptographic keys (starting from the PUF root 

key) can be (re-)created without storing them in a memory, 

removing the need for a device to have any physical form of 

secure storage. More details about the basic functionality of 

SRAM PUF can be found in “SRAM PUF: The Secure Silicon 

Fingerprint” [6]. 

 

C. Randomness Generation Based on SRAM PUF 

Besides extracting keys from the SRAM PUF responses, the 

SRAM PUF responses can also be used as a source of non-

repeating true randomness. The randomness comes from the 

small percentage of bit cells in an SRAM memory, whose 

transistor threshold voltages happen to match quite closely. 

These bit-cells do not have a strong preferred power-up state 

but tend to power-up randomly: sometimes as a logic ‘0’ and 

sometimes as a logical ‘1’. The stability of PUF response bits 

from an SRAM memory can be investigated by analyzing their 

so-called one-probability.  

 

One-probability is defined as the probability that an SRAM cell 

powers up in the logical “1” state. As can be seen from the 

probability density histogram in Figure 4, most SRAM PUF 

cells have a one-probability value either close to 0.0 or close to 

1.0., which respectively indicates a stable 0-producing cell or a 

stable 1-producing cell. Only relatively few cells will have a 

one-probability not close to either 0.0 or 1.0, indicating an 

unstable cell, i.e., a cell for which the response value resulting 

from a power-up is not relatively certain upfront, and which 

hence has some level of unpredictability to it. A small (but non-

negligible) minority of cells will have a one-probability close 

to 0.5, which indicates a fully unpredictable response behavior. 

The unstable cells are responsible for the so-called noisy 

behavior of the SRAM PUF, generating fresh entropy upon 

every power-up of the SRAM memory. This entropy is also 

called the noise entropy of the PUF. 

 

Analyses of actual SRAM PUF measurements show that about 

5% of the cells will have a noise min-entropy contribution of 

more than 0.5 bit/cell. As a consequence, for an SRAM PUF 

which contains a sufficiently large number of individual cells, 

there will always be a considerable number of cells which 

consistently generate noise entropy (e.g., in an SRAM array of 

1000 cells, there will be on average about 50 cells that generate 

a significant level of noise min-entropy on every power-up). 

This noise entropy provides the basis for using the SRAM PUF 
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as a noise source in a FIPS compliant random number 

generator. 
 

 
Figure 4: One-probability distribution of a 1KB SRAM array measured 
1000 times at room temperature. Most of the bit cells power up as a 
very stable digital 0 or 1 value (resulting in the peaks in the above 
histogram). A minority of bit cells has a more random power-up 
behavior and contribute to the noise entropy. 

 

Considering the typical one-probabilities as observed in SRAM 

PUF responses, we can say that the noise entropy contained in 

them is sparse and diluted:  

• The total noise entropy produced by an SRAM PUF 

array will mostly be generated by a minority of its cells 

that contribute a relatively high entropy rate. These 

few entropy- contributing cells are distributed sparsely 

over random positions in the SRAM PUF array. 

• The total amount of noise entropy produced by an 

SRAM PUF array will be relatively low compared to 

the size of the array in terms of number of cells. The 

expected (averaged) entropy contribution per cell will 

hence be rather low, or in other words the noise 

entropy in an SRAM PUF response is diluted. 

 

Because of these properties, we propose to use an additional 

entropy concentration function on the SRAM PUF output such 

that there is a better fit with the NIST entropy source model, as 

is explained in the next section. 
 

III. FIPS COMPLIANT RANDOMNESS GENERATION 

FIPS 140-3 compliant security modules need to have a random 

number generator that is compliant to the NIST SP800-90 

specifications [12][13][14]. According to these specifications, 

an approved random number generator consists of a 

Deterministic Random Bit Generator (DRBG) that is requesting 

entropy from a randomness source such as a NIST approved 

Entropy Source, see the setup in Figure 5.  
 

In the following subsection we will explain how an SRAM PUF 

can be used to create an Approved Entropy Source according to 

the NIST SP800-90B recommendations. 
 

 
Figure 5: Schematic architecture of an approved Random Number 
Generator construction according to the NIST SP800-90C specification 
[14]. 

 

A. Entropy Source 

Guidelines for NIST approved entropy sources are given in the 

NIST SP800-90B specification [13]. There an entropy source is 

considered to include the components as depicted in Figure 6. 

It comprises a Digital Noise Source, whose output is Raw data 

that is being tested with a Health Test function. Before the Raw 

data is output, it is optionally conditioned. The Digital Noise 

Source consists of an Analog Noise Source whose output is 

digitized using a Digitization function.  
 

 
Figure 6: Entropy Source Model according to NIST SP800-90B 
specification [13]. Texts between >>marks<< indicate the proposed 
implementation of components for an SRAM PUF based entropy 
source 

. 

1) Analog Noise Source 

To create an SRAM PUF based entropy source, we can use the 

power-up state of SRAM as the “Analog Noise Source”. Even 

though the direct evaluation of the SRAM PUF is already in a 

digital (binary) form, an additional “digitization” step is 

proposed to transform the noise source output into digital noise 



samples that have the required properties such as a guaranteed 

lower-bound on the min-entropy. 

 

2) Digitization 

The reason for this proposed digitization step is the fact that the 

noise entropy present in the binary PUF is sparse and diluted, 

as was discussed in the previous section. The NIST SP800-90B 

specification requires that each individual sample produced by 

the noise source should have a guaranteed lower-bound for its 

(min)-entropy. If the noise source produces (occasional) 

samples with very low entropy, it will fail some of the statistical 

validation checks defined by the specification, even if the total 

collection of produced samples as a whole contains sufficient 

entropy for the intended application. Using SRAM PUF bits 

directly as noise samples is hence suboptimal because many bit 

locations do not contain any noise entropy at all (due to the 

sparseness).  

 

We propose to implement an Entropy Concentration function 

as “digitization” step, which ensures that the sparse and diluted 

noise entropy in the SRAM PUF bits is transformed into a 

smaller set of output bits in which the noise entropy is 

concentrated. This entropy concentration function should not 

obfuscate the statistical properties of the physical behavior on 

which the noise source relies as the origin of the noise entropy. 

This rules out the use of, e.g., cryptographic hash functions, and 

most other kinds of cryptographic operations, which would 

typically be used to extract values with a high entropy density 

from sources with a low entropy rate.  

 

A simple binary matrix multiplication can do the required job. 

The matrix can be designed with the property that when used in 

the binary multiplication, it will mix a large number of input 

bits into a small number of output bits, while preserving to a 

large extent the entropy of the input. This guarantees that noise 

in the sparsely distributed noisy input bits gets concentrated into 

a smaller number of output bits. Moreover, such a matrix 

multiplication is a simple linear transform which largely retains 

the statistical properties of the noise source, allowing for 

meaningful testing and validation of the noise source samples. 

An example of a suitable matrix with the desired properties, is 

the parity-check matrix of a Reed-Muller code. 

 

3) Health Tests 

The output of the Digital Noise Source, the Raw Data, needs to 

be tested by means of Health Tests to detect deviations from 

intended behavior. The goal of these tests is to ensure that the 

noise source operates as expected (under potentially varying 

external conditions) and that critical failures of entropy 

generation are detected. Health tests need to be tailored to the 

specific noise source and are typically technology specific. 

They are expected to raise an alarm when there is a significant 

decrease in the entropy of its outputs, when noise source 

failures occur, or when underlying hardware fails. 

 

The NIST specification [13] requires that both startup tests and 

continuous tests are included. Whereas startup tests run after 

powering up or rebooting to verify that the noise source 

components are operational, continuous tests need to run when 

the noise source is operating to detect failures while the noise 

source produces outputs. An SRAM PUF based random source 

does not continuously produce random outputs, but instead 

delivers entropy at power-up of the SRAM memory. So that is 

the moment at which the “continuous” tests as described by 

NIST need to be run.  

 

Two statistical tests on the Raw Data that are mandatory 

according to NIST SP800-90B are: 

• Repetition Count test: tests for too long sequences of 

repeating noise sample values, 

• Adaptive Proportion test: tests for a too high 

occurrence of a noise sample value in a fixed-length 

window. 

 

Both these tests as described in the specification can be applied 

directly to the Raw Data as produced by the SRAM PUF based 

noise source. Additional vendor-defined tests are recommended 

to test technology specific failure modes which are not 

sufficiently covered by the two mandatory tests.  

 

In the case of an SRAM PUF based noise source we propose to 

add tests on the actual PUF response values before the 

digitization step, to increase the sensitivity of detecting 

problems. The Repetition Count and Adaptive Proportion tests 

can (with adapted parameters) be extended to be run on PUF 

response values directly. 

 

Additionally, to detect reuse of SRAM PUF values without 

proper re-powering in between (a very specific SRAM PUF 

failure mode), we propose to add an SRAM state test. After 

using the SRAM PUF values for harvesting entropy, a pre-

defined value is written in a pre-defined part of the SRAM. 

When entropy is requested, it is first checked whether the pre-

defined part of SRAM contains the pre-defined value 

(indicating it has already been used) or not. This way re-use 

without proper repowering can be detected and avoided. 

 

4) Conditioning 

The conditioning function is optional according to the NIST 

specification. It can be used to reduce bias and/or to increase 

the entropy rate of the output bits. However, when used in 

combination with a DRBG mechanism which anyway 

cryptographically compresses the entropy input upon 

instantiation, a conditioning function in the entropy source is 

generally not needed. 

 

5) Interfaces 

At least the following conceptual interface functions should be 

implemented in an approved entropy source: 

• GetEntropy: an interface over which the consuming 

DRBG can request entropy and in return obtain a 

bitstring containing at least the requested amount of 

entropy. After checking that the SRAM PUF values 

have not been used before (SRAM state test), the PUF 
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response values are passed through the digitization 

function. After applying the health tests as described 

in the previous subsection, the Raw Data is provided 

via the output to the calling DRBG. To prevent 

accidental reuse or disclosure of SRAM PUF response 

values, the SRAM can be zeroized. 

• GetNoise: an interface to obtain raw, digitized outputs 

from the noise source for use in validation testing or 

external health testing. This function follows the same 

procedure as the GetEntropy function, but without 

executing the health tests. The function should be 

made available in a special test mode and not be 

callable in a regular operational mode. Calling 

GetNoise prohibits any further calls to GetEntropy, 

until the SRAM (or the device) is properly repowered. 

• HealthTest: an interface over which the internal health 

tests can be triggered. This function only outputs an 

okay or not-okay signal to the calling application, 

without actually outputting any random data. The 

GetEntropy function can still be called after calling 

this function as it does not destroy the noise entropy in 

the SRAM (i.e., no zeroization is applied). 
 

B. DRBG 

The Deterministic Random Bit Generator (DRBG) is the main 

mechanism that is called by the application to deliver random 

data. Approved cryptographic mechanisms are described in the 

NIST SP800-90A specification [12]. The implementation of a 

DRBG according to this specification does not depend on the 

specifics of the noise source used. Hence there are no specific 

mechanisms that need to be implemented related to our SRAM 

PUF based noise source. The functional model for a DRBG as 

described by NIST is depicted in Figure 7. 
 

 
Figure 7: DRBG Functional Model, as taken from the NIST SP800-90A 
specification [12].  

A consuming application requests random bits by calling the 

Generate Function. Application specific input data can be 

mixed in via an optional Additional Input if desired. The 

Generate Function uses a NIST approved pseudo-random 

function of the proper security strength for updating its state and 

generating output data. Correct implementation of the used 

pseudo-random function can be validated and certified via the 

NIST CAVP program [20]. 

 

Before being able to call the Generate Function, the initial state 

first needs to be created by calling the Instantiate Function. The 

Instantiate Function brings in true randomness from the 

Entropy Source and mixes that with an optional Personalization 

String input provided by the application.  

The NIST specification requires the presence of an 

Uninstantiate Function to destroy the Internal State in case of 

certain security related events such as detected breaches. 

Furthermore, there needs to be a Test function to test the correct 

operation of the DRBG, which can be called at any time and is 

automatically triggered upon initial use of the DRBG. 

 

The Reseed Function is optionally implemented to have the 

possibility to provide additional entropy that will securely 

update the internal state of the DRBG. This function could be 

used to restore secrecy of the internal state when full secrecy of 

the internal state cannot be guaranteed anymore. The NIST 

specifications prescribe that a seed has a limited lifetime. In 

particular, the maximum number of requests that can be served 

from a single seed is 248 for DRBGs that use a SHA or AES 

based pseudo-random function. An internal counter is keeping 

track of the actual number of requests that have been handled 

and the DRBG shall indicate that a reseed is required when the 

maximum number of requests is passed. 

 

1) Special Considerations 

Two limitations when working with an SRAM PUF based 

entropy source in this respect are: 

1. After the DRBG has been uninstantiated, a repower of 

the SRAM (or the device) is needed before a new 

instantiation can take place, to generate fresh noise 

entropy for the noise source. 

2. A reseed can only be implemented from the SRAM 

PUF based noise source when the used SRAM 

memory has a dedicated SRAM power switch. In case 

the SRAM is powered along with the rest of the 

device, a reseed cannot be implemented from the same 

entropy. 

 

In practice, the reseed limitation is not an issue as typically 

multiple random bytes are requested at once (per request) and 

248 requests can be served without reseeding. This huge number 

of requests is not even reached within 100 years of device 

operation when the DRBG would be called once every 

millisecond.  
 

IV. ENTROPY SOURCE VALIDATION 

The NIST SP800-90B specification [13] describes how entropy 

sources can be validated with statistical tests, to assure that the 

relevant requirements of the specification are met. This is a 

procedure that is typically executed by an accredited laboratory. 

The entropy source vendor needs to provide an entropy 



estimate, which is based on its own model and analysis of the 

noise source. In this section we provide an example on how this 

is done. 

 

For the SRAM PUF noise source, we can use our probabilistic 

model of an SRAM PUF [21] to provide an initial entropy 

estimate. The model is tuned to an actual device 

implementation by measuring the SRAM PUF noise and bias 

(see section “The SRAM PUF”) from a platform on which we 

want to implement our random number generator. 

 

In this example case, we use measurements from a Texas 

Instruments TM4C123GH6PM microcontroller. At a constant 

temperature we obtain 1000 PUF measurements of an 8 

kilobyte SRAM region by repeating the following procedure 

1000 times:  

1. power off the board, 

2. wait 1 second,  

3. power on the board 

4. read out SRAM contents and write it to a file on the 

controlling PC.  

The PC is used to program the microcontroller and to retrieve 

measurement data over the UART/USB interface. The 

measured PUF noise and one-probability distribution (before 

digitization) are used as input to our PUF model to compute an 

entropy estimate.  

 

For the digitization step we implement an entropy concentration 

function in the form of a matrix multiplication with the 

transposed parity check matrix of a Reed-Muller(5,8) error 

correcting code. With this matrix multiplication we transform 

every block of 256 input bits from the SRAM PUF into 37 

output bits that serve as raw samples of the noise source. After 

applying this entropy concentration function, the one-

probability distribution of the output bits looks as is depicted in 

Figure 8. The figure shows that after applying the 

transformation, most of the bits have a one-probability that is 

close to 0.5. Compare that to the original one-probability 

distribution that was presented in Figure 4. 

 

Using our PUF model, we find a lower-bound entropy estimate 

of 0.37 bits per raw noise sample, where a sample equals a 

single output bit after applying the entropy concentration 

function. This value is used as the “submitter entropy” value for 

the statistical entropy validation in the next stage. 

 

Next, we run the NIST-SP800-90B Entropy Assessment test 

suite [22]. This test suite is used to validate with statistical tests, 

which do not have knowledge of the specific noise source 

model, that there are no statistical indications of any entropy 

issues. For the statistical tests, two datasets are created based on 

the measured SRAM PUF data: 

1. A sequential dataset, where we concatenate all bits of 

the measurements after applying the entropy 

concentration function, 

2. A restart dataset, where we use exactly 1000 output 

bits (after applying the entropy concentration 

function) for each of the 1000 measurements. 
 

 
Figure 8: One-probability distribution (histogram) of SRAM PUF data 
after applying the entropy concentration function based on a matrix 
multiplication with a RM(5,8) parity check matrix. 

We consider the SRAM PUF based generated noise samples to 

be non-i.i.d., meaning not identically and independently 

distributed because of the following reasons: 

- The behavior of the individual SRAM PUF cells is by 

its nature non-identical, since each cell has its own 

individual distribution described by its one-

probability, 

- The entropy concentrating transform generates noise 

samples from SRAM PUF cell evaluations in a manner 

which is not fully independent. 

 

For this reason, we run the non-i.i.d. entropy assessment flow 

of the NIST-SP800-90B test suite [22] on the sequential dataset. 

As a result we find an estimated entropy of 0.84 bits per sample. 

 

We run the entropy assessment restart test [22] on our restart 

dataset of 1000 times 1000 samples, which are used in the test 

as a 1000 by 1000 matrix of output samples (bits). As additional 

input we need to provide an initial entropy estimate, which is 

the minimum of our model-based submitter entropy and the 

entropy estimate created by the non-i.i.d. entropy assessment. 

In our case, the submitter entropy was the lowest and hence the 

value of 0.37 bits per sample is used as initial entropy estimate 

input. The restart tests verify the following: 

1. A restart sanity check: check that the frequency of the 

most common value in the rows and the columns of 

the matrix is not significantly larger than the expected 

value, given the initial entropy estimate. This sanity 

check passes with our restart dataset. 

2. A restart validation check: check that the entropy 

estimates over the columns and over the rows of the 

matrix is at least half of the initial entropy estimate. 

This validation check passes as the test suite estimates 
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a row entropy of 0.81 bits per sample and a column 

entropy of 0.84 bits per sample, which are both higher 

than half of the submitter entropy of 0.37 bits per 

sample.  

 

With all tests passing we find a minimum noise entropy 

estimate of 0.37 bits per sample. This is the value that we need 

to consider when feeding noise into the DRBG on this platform. 

It means in practice that for providing 256 bits of noise entropy 

into our DRBG, we need to take at least 256/0.37=692 bits of 

entropy source output data. Given the efficiency of our entropy 

concentration function, this requires at least 692/37*256 ≈ 4787 

bits (~600 Bytes) of SRAM PUF data. 

 

It should be noted that the above entropy assessment serves 

merely as an example. In a proper entropy source validation run, 

we would need to repeat the analysis over multiple devices and 

focus on the worst-case SRAM PUF noise condition, which is 

typically at the lowest operating temperature. This will result in 

an implementation that uses slightly more SRAM PUF data 

than the estimate provided in the above example. Nonetheless, 

the example shows that constructing an SRAM PUF based 

entropy source that fulfills the NIST SP800-90 criteria is 

feasible. 
 

 

V. CONCLUSIONS 

In this paper we have shown how a NIST SP800-90 compliant 

random number generator can be constructed with an entropy 

source that is based on using uninitialized SRAM memory. 

Even though the NIST specifications seem to be written with a 

continuous or “temporal” noise source model in mind, we have 

shown how to apply the specifications to our “spatial” SRAM 

PUF noise source. In this spatial model, the entropy is not 

released over time but instead generated at one specific moment 

in time at power up of the SRAM. The number of samples that 

can be produced per power-up is limited by the SRAM size, 

which is a property that needs to be taken into account by the 

implementation of the random number generator. Another 

specific aspect of using the SRAM PUF as entropy noise source 

is to deal with the sparse and diluted characteristics of the 

SRAM PUF noise. An entropy concentration function has been 

proposed as part of the digitization step to improve the 

properties of the Raw Data output. With this addition we have 

shown that our SRAM PUF based noise source can successfully 

pass the NIST entropy validation tests on an actual 

microcontroller device.  

 
With the construction presented in this paper, we have shown 

how SRAM PUF technology can be leveraged to instantiate a 

strong RNG on almost any microcontroller, hence providing a 

universal solution for strong randomness in the Internet of 

Things. Intrinsic ID has created an embedded software product 

called Zign RNG [19] around this proposition. It is delivered as 

a compiled library for a specific CPU and comes with 

documentation including datasheet, API reference manual and 

entropy source validation guide for use in FIPS certification 

projects. The implemented cryptographic algorithms in the 

DRBG have been certified using the NIST CAVP program [26].  
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